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Abstract. Lawvere hyperdoctrines give categorical semantics for intu-
itionistic predicate logic but are flexible enough to be applied to other
logics and extended to higher-order systems. We return to Ghilardi’s
hyperdoctrine semantics for first-order modal logic [3] and extend it in
two directions—to weaker, non-normal modal logics and to higher-order
modal logics. We also relate S4 modal hyperdoctrines to intuitionis-
tic hyperdoctrines via a hyperdoctrinal version of the Gödel-McKinsey-
Tarski translation. This work is intended to complement the other cat-
egorical semantics that have been developed for quantified modal logic,
and may also be regarded as first steps to extend coalgebraic modal logic
to first-order and higher-order settings via hyperdoctrines.
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1 Introduction

Moving from propositional modal logic to quantified modal logic is less straight-
forward than one might hope. For example, traditional Kripke semantics do
not automatically extend to the first-order case, with several instances of well-
motivated but incomplete extensions of Kripke-complete propositional logics [5].
Turning to alternative semantics, category-theoretic methods have been used
extensively by Ghilardi and Meloni [7–11] for mathematical and philosophical
investigations of quantified modal logic beyond the reach of Kripke semantics.

Amongst the category-theoretic tools deployed are Lawvere’s hyperdoctrines
[15]. Hyperdoctrines provide semantics for first-order logics that reduce to famil-
iar algebraic semantics on the propositional level. Originally conceived for intu-
itionistic predicate logic, they are flexible enough to be applied to other logics
and extended to higher-order systems. Hyperdoctrine semantics for first-order
normal modal logics are presented in [3], where they are used by Ghilardi as a
unifying tool for studying other non-Kripkean modal semantics, while Awodey,
Kishida and Kotzsch [2,13] provide topos-theoretic hyperdoctrine semantics for
higher-order modal logic based on intuitionistic S4.

We make three contributions to modal hyperdoctrine. The first is a very gen-
eral presentation. Ghilardi’s presentation in [3] concerns a single-sorted typed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Metcalfe et al. (Eds.): WoLLIC 2024, LNCS 14672, pp. 225–242, 2024.
https://doi.org/10.1007/978-3-031-62687-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62687-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-62687-6_15


226 F. Verity and Y. Maruyama

language and a base propositional modal logic of S4, while advising that it
is straightforward to generalise. We follow this guidance to present modal
hyperdoctrine semantics for a many-sorted typed language and a base propo-
sitional modal logic of the weaker non-normal class. To this end, we intro-
duce hyperdoctrines in Sect. 2, present the syntax of the modal logic in Sect. 3,
and give the semantics in Sect. 4. The second contribution is to connect modal
hyperdoctrines—in the case of S4 modal logics—to intuitionstic hyperdoctrines
via a translation theorem (Sect. 4.3). The third is to define higher-order modal
hyperdoctrines for non-normal modal logics and prove their soundness and com-
pleteness (Sect. 5). This complements the aforementioned work of Awodey et al.,
in which the topos-theoretic nature of their semantics prohibits generalising to
bases weaker than S4. In Sect. 6 we conclude with future directions.

2 Hyperdoctrine Semantics

In this section, we define a hyperdoctrine and consider when a logic has seman-
tics in a hyperdoctrine. Many decisions are made in choosing a quantified modal
logic, from the base propositional logic to the interaction between the modal
operators and quantifiers. We take the perspective: if we want sound and com-
plete hyperdoctrine semantics for modal logic, what does it require of our logic?

Lawvere hyperdoctrines are fibred algebras indexed by categories, where the
algebras represent the propositional logic and the indexing category provides
a type structure. Let C be a category with finite products and HA be the
category of Heyting algebras and finite meet preserving functions between them.
A hyperdoctrine is a functor

P : Cop → HA

capturing quantification by the following requirements. For any projection π :
X ×Y → Y in C, the image P (π) : P (Y ) → P (X ×Y ) has right and left adjoints

∀π : P (X × Y ) → P (Y ) and ∃π : P (X × Y ) → P (Y ).

These adjoints satisfy corresponding Beck-Chevalley conditions: for ∀π, this says
that the following diagram commutes for any f : Z → Y in C, where π′ : X×Z →
Z is a projection1:

P (X × Y ) P (Y )

P (X × Z) P (Z)

P (idX×f)

∀π

P (f)

∀π′

(1)

The indexing category C represents a type structure that acts as a domain of
reasoning for the logic. In this way, hyperdoctrines adopt the view that “a logic

1 The left adjoint must also satisfy the Frobenius reciprocity condition, omitted here as
we are only concerned with classical logic, in which the quantifiers are interdefined.
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is always a logic over a type theory” [12]. This is more natural from a category-
theoretic perspective and subsumes untyped logics via reduction to a single type.

The restrictions placed on the syntax of our logic if we wish to equip it with
hyperdoctrine semantics are as follows. The syntax is a typed version, built on
top of a type signature and term calculus, detailed in Sect. 3. The functorial-
ity of P means that substitution commutes with all of the logical connectives.
This is clear when we consider the syntactic hyperdoctrine in Sect. 4, where we
see that in order for the image of a map in the base category to be an algebra
homomorphism, it is necessary that substitution commutes with the proposi-
tional connectives. Considering the syntactic hyperdoctrine also demonstrates
that the Beck-Chevalley condition corresponds logically to the quantifiers com-
muting with substitution, and so we also require this of our syntax.

3 Typed First-Order Non-normal Modal Logic

Non-normal modal logics are a particularly weak class of modal logics, as distinct
from normal modal logics such as K and S4. In this section, we present a typed
version of first-order non-normal modal logics, following [1] for the logic and [19]
for the typing. The resulting system is essentially a multi-sorted, non-normal
version of the single-sorted, normal logic in [3].

3.1 Term Calculus

The logic is built on a typed (many-sorted) signature Σ, consisting of type sym-
bols σ, function symbols F : σ1, . . . , σn → τ and relation (predicate) symbols
R ⊆ σ1, . . . , σn. For each type σ there are variables x, y, z, . . . , and the formal
expression x : σ is a type judgement expressing that x is a variable of type σ. A
context is a finite list of type judgements x1 : σ1, . . . , xn : σn, denoted by Γ .

On top of the signature is a term calculus. The basic term calculus consists
of terms-in-context, which are judgements M : σ [Γ ], expressing that M is a
well-formed term of type σ in context Γ . The well-formed terms-in-context in
the basic term calculus are inductively generated by the following rules:

– x : σ [Γ, x : σ, Γ ′] is a term;
– if F : σ1, . . . , σn → τ is a function symbol and M1 : σ1 [Γ ], . . . , Mn : σn [Γ ]

(abbreviated �M : �σ) are terms, then F (M1, . . . ,Mn) : τ [Γ ] is a term.

The meta-theoretic operation of substitution over a term of a term for a variable
is defined by induction on the structure of an untyped term N :

– if N = xi then N [ �M/�x] = Mi;
– if N = F (N1, . . . , Nn) then N [ �M/�x] = F (N1[ �M/�x], . . . , Nn[ �M/�x]).

A formula-in-context is a judgement φ [Γ ] expressing that φ is a well-formed
formula in context Γ . For each relation symbol R ⊆ σ1, . . . , σn, if M1 : σ1 [Γ ], . . . ,
Mn : σn[Γ ] are terms, then R(M1, . . . ,Mn) [Γ ] is an atomic formula. Compound
formulae are built from the atomic formulae and the constant ⊥ with the rules:
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– ⊥ [Γ ] is a formula;
– if φ [Γ ] and ψ [Γ ] are formulae then φ ⊃ ψ [Γ ] is a formula;
– if φ [x : σ, Γ ] is a formula then ∀xφ [Γ ] is a formula;
– if φ [Γ ] is a formula then �φ [Γ ] is a formula.

The remaining connectives are treated as abbreviations in the usual manner;
this includes equivalence of formulae φ ⊃⊂ ψ, abbreviating φ ⊃ ψ ∧ ψ ⊂ φ.

If φ [Γ ] is a formula with Γ = x1 : σ1, . . . , xn : σn and M1 : σ1 [Γ ′], . . . , Mn :
σn [Γ ′] are terms, we want to define a formula φ[ �M/�x] [Γ ′], where every instance
of the variable xi is replaced by the term Mi, for every i. Since every formula
is built in a unique way from atomic subformulae and the rules for forming
compound formulae, substitution into a formula is defined on these subformulae
as follows. Substitution over atomic formulae:

R(N1, . . . , Nn)[ �M/�x] [Γ ′] := R(N1[ �M/�x], . . . , Nn[ �M/�x]) [Γ ′]

Substitution on subformulae (where xm+1 is a fresh variable):

– ⊥[ �M/�x] [Γ ′] := ⊥ [Γ ′]
– (φ1 ⊃ φ2)[ �M/�x] [Γ ′] := (φ1[ �M/�x]) ⊃ (φ2[ �M/�x]) [Γ ′]
– (∀xn+1ψ)[ �M/�x] [Γ ′] := ∀xm+1(ψ[ �M/�x, xm+1/xn+1]) [Γ ′]
– (�ψ)[ �M/�x] [Γ ′] := �(ψ[ �M/�x]) [Γ ′]

3.2 Logical Calculus

A Hilbert-style system for (typed) non-normal propositional modal logics is given
by any axiomatisation of propositional logic, plus the rules and axiom schema

φ ⊃⊂ ψ [Γ ]
�φ ⊃⊂ �ψ [Γ ]

(RE)
φ [Γ ] φ ⊃ ψ [Γ ]

ψ [Γ ]
(MP) ♦φ ⊃⊂ ¬�¬φ [Γ ] (E)

and zero or more of the following axiom schemata:

�(φ ∧ ψ) ⊃ (�φ ∧ �ψ) [Γ ] (M)

(�φ ∧ �ψ) ⊃ �(φ ∧ ψ) [Γ ] (C)

�
 [Γ ] (N)

The smallest non-normal propositional modal logic is called E; the non-normal
extensions are denoted by EX , where X is a subset of {M,N,C} and EX is
the smallest system containing every instance of the axiom schemata in X. The
system EMCN is equivalent to the smallest normal modal logic K. The system
S4 is K plus the schemata �φ ⊃ φ [Γ ] (T) and �φ ⊃ ��φ [Γ ] (4).
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To extend any propositional non-normal modal logic S to a (typed) first-order
logic TFOL+ S, we add the following axiom schema and rules:2

(∀xφ)[x1, . . . , xn] ⊃ φ [x : σ, Γ ] (∀-Elim)

φ[x1, . . . , xn] ⊃ ψ [x : σ, Γ ]
φ ⊃ ∀xψ [Γ ]

(∀-Intro)
φ [Γ ]

φ[ �M/�x] [Γ ′]
(Inst)

where Γ = x1 : σ1, . . . , xn : σn and �M abbreviates the terms M1 : σ1 [Γ ′], . . . ,
Mn : σn [Γ ′]. The formula φ[x1, . . . , xn] evidentiates the free variables of φ, since
the rule requires that x is not free in φ. It differs from the formula φ [Γ ] by the
renaming of bound variables.

A derivation of a formula φ [Γ ] is a finite sequence of formulae φ1 [Γ1], φ2 [Γ2],
. . . , φn [Γn] such that each formula is either an instance of an axiom schema or
follows from earlier formulae by one of the rules of inference. A formula φ [Γ ] is
said to be derivable in the axiom system TFOL+ S if there exists a derivation
of φ [Γ ] in this axiom system, denoted �TFOL + S φ [Γ ].

4 Hyperdoctrine Semantics for TFOL + EX

Before defining a modal hyperdoctrine, we present the standard algebraic seman-
tics for modal logic, to which the hyperdoctrine semantics reduce on the proposi-
tional level. Algebraic semantics for modal logic S4 were developed by McKinsey
and Tarski, extended to normal modal logics in [16], and even weaker modal log-
ics in [6]. We adopt this last, most general, definition of modal algebra.

Definition 1. A modal algebra A is a Boolean algebra (A,∧A,∨A,¬A,
A,⊥A)
together with a unary operator �A satisfying zero or more conditions, such as:

�A(x ∧A y) ≤ �A(x) ∧A �A(y) (MA)
�A(x) ∧A �A(y) ≤ �A(x ∧A y) (CA)

�A(
A) = 
A (NA)
�A(x) ≤ x (TA)
�A(x) ≤ �A�A(x) (4A)

There are secondary operations x ⊃A y := ¬Ax∨A y and ♦A(x) := ¬A�A(¬Ax).

We use the same notation for the operations on the algebra as for the logical
connectives, to highlight their correspondence. The algebraic operations are sub-
scripted with the underlying set when it is helpful to have a reminder that we are
in the algebraic setting. A poset structure is inherited from the Boolean algebra,
given by the order x ≤ y if and only if x ∧A y = x. Modal algebras and finite
meet preserving functions between them form the category MA.
2 This axiomatisation deviates from [1], instead following [3] in taking two separate
principles of replacement—corresponding to the Instantiation rule—and agreement—
corresponding to the ∀ -Introduction rule—to more readily accommodate the proofs.



230 F. Verity and Y. Maruyama

Possible conditions on �A correspond to axiom schemata of the logical cal-
culus to be captured. In the proofs that follow, we only specify the strength of
modal algebra to which the category MA refers when necessary. Since we are
concerned with the level of predicates, most proofs operate independently of the
specific axioms satisfied by the modal operator.

4.1 Modal Hyperdoctrine Semantics

In this section we adapt the definition of Lawvere hyperdoctrine from intuition-
istic logic to modal logic, define interpretation in a modal hyperdoctrine, and
prove that this gives sound and complete semantics for TFOL+EX .

Definition 2. Let C be a category with finite products. A modal hyperdoctrine
is a contravariant functor P : Cop → MA such that for any projection π :
X × Y → Y in C, P (π) : P (Y ) → P (X × Y ) has a right adjoint satisfying the
Beck-Chevalley condition (1).

Since our modal logic is classical, our definition of modal hyperdoctrine does not
treat the existential quantifier independently.

Definition 3. Fix a modal hyperdoctrine P : Cop → MA. An interpretation
�-� of TFOL+EX in P consists of the following:

– assignment of an object �σ� in C to each basic type σ in TFOL+EX ;
– assignment of an arrow �F � : �σ1� × · · · × �σn� → �τ� in C to each function

symbol F : σ1, . . . , σn → τ in TFOL+EX ;
– assignment of an element �R [Γ ]� in the modal algebra P (�Γ �) to each typed

predicate symbol R [Γ ] in TFOL+EX ; if the context Γ is x1 : σ1, ..., xn : σn,
then �Γ � denotes �σ1� × ... × �σn�.

The interpretation of a term is defined by induction on its derivation, as follows:

– �x : σ [Γ, x : σ, Γ ′]� is defined as the following projection in C:

π : �Γ � × �σ� × �Γ ′� → �σ�;

– �F (M1, . . . ,Mn) : τ [Γ ]� := �F � ◦ 〈�M1 : σ1 [Γ ]�, . . . , �Mn : σn [Γ ]�〉.
Formulae are interpreted inductively in the following manner:

– �R(M1, . . . ,Mn) [Γ ]� := P (〈�M1 : σ1 [Γ ]�, . . . , �Mn : σn [Γ ]�〉)(�R�).
– For the propositional connectives:

�φ ∧ ψ [Γ ]� := �φ [Γ ]� ∧P (�Γ �) �ψ [Γ ]�
�φ ∨ ψ [Γ ]� := �φ [Γ ]� ∨P (�Γ �) �ψ [Γ ]�
�φ ⊃ ψ [Γ ]� := �φ [Γ ]� ⊃P (�Γ �) �ψ [Γ ]�

�¬φ [Γ ]� := ¬P (�Γ �)�φ [Γ ]� �⊥ [Γ ]� := ⊥P (�Γ �)

��φ [Γ ]� := �P (�Γ �)(�φ [Γ ]�) �
[Γ ]� := 
P (�Γ �)
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– For the quantifiers:

�∀xφ [Γ ]� := ∀π(�φ [x : σ, Γ ]�) and �∃xφ [Γ ]� := ∃π(�φ [x : σ, Γ ]�)

where π : �σ� × �Γ � → �Γ � is a projection in C.

For a formula φ [Γ ], where Γ = x1 : σ1, . . . , xn : σn, and terms M1 :
σ1 [Γ ′], . . . ,Mn : σn [Γ ′], the interpretation of substitution by �M is:

�φ[ �M/�x] [Γ ′]� = P (〈�M1 : σ1 [Γ ′]�, . . . , �Mn : σn [Γ ′]�〉)(�φ [Γ ]�).

This can be proved by induction on the structure of φ. Weakening of the context
of a formula φ [Γ ] to the context x : σ, Γ is the following special case:

�φ [x : σ, Γ ]� = P (π)(�φ [Γ ]�)

where π : �σ� × �Γ � → �Γ � is a projection map.

Definition 4. A formula φ [Γ ] is satisfied in an interpretation �-� in a modal
hyperdoctrine P if and only if �φ� = 
P (�Γ �).

Since a ≤A 
A holds for every element a in a Boolean algebra A, showing
the satisfiability of φ [Γ ] amounts to showing 
P (�Γ �) ≤ �φ�. Note that the
definition of satisfaction here differs from that in [19], which is concerned with
the satisfiability of sequents rather than formulae.

4.2 Soundness and Completeness

We proceed by proving the soundness and completeness of TFOL+EX with
respect to the modal hyperdoctrine semantics. We make use of an equivalent
condition for the satisfaction of an implication φ ⊃ ψ [Γ ] in an interpretation:


 ≤ �φ ⊃ ψ [Γ ]� if and only if �φ [Γ ]� ≤ �ψ [Γ ]�. (2)

This follows from the fact that in a Boolean algebra, the pair of functions - ∧x :
A → A and x ⊃ - : A → A determine an adjunction, that is, for all y, z ∈ A,
z ≤ x ⊃ y if and only if z ∧ x ≤ y. Letting z = 
 and using the fact that

 ∧ x = x, we have 
 ≤ x ⊃ y if and only if x ≤ y.

We will also use the following bijection, coming from the adjointness condition
on the universal quantifier:

P (π)(A) ≤P (X×Y ) B

A ≤P (Y ) ∀π(B)
(3)

The following soundness proof is with respect to the systems TFOL+EX ,
but we note that the proof applies to other systems TFOL+ S, provided we
strengthen the conditions on the modal operator in correspondence with the
axiom schemata of S. This generality is possible given how the predicate and
propositional components interact in the semantics, that is, the structure on
the predicate part governs the interaction between the modal algebras, while
preserving their internal structure.
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Proposition 1. If φ [Γ ] has a derivation in TFOL+EX , then it is satisfied
in any interpretation in any modal hyperdoctrine.

Proof. See Appendix A.

Towards proving completeness, we now define the syntactic hyperdoctrine of
TFOL+ S. For the base category C, let the objects be contexts Γ up to α-
equivalence (renaming of variables). This is equivalent to taking as objects lists
of types σ1, . . . , σn, rather than a list of variable-type pairs. A context morphism
from σ1, . . . , σn to Γ ′ = τ1, . . . , τm is given by a list of terms t1 : τ1[Γ ], . . . , tm :
τm[Γ ], abbreviated [t1, . . . , tm] : Γ → Γ ′. We take as arrows equivalence classes
of context morphisms under the relation [t1, . . . , tn] = [s1, . . . , sn] if and only
if ti is equivalent—as terms—to si, for all i. Contexts up to α-equivalence and
context morphisms up to term-equivalence form a category.

Definition 5. For a context Γ , let FormΓ := {φ | φ is a formula in context Γ}.
The syntactic hyperdoctrine P : Cop → MA sends objects Γ to

P (Γ ) := FormΓ / ∼

where ∼ is the equivalence relation φ ∼ ψ if and only if �TFOL+S φ ⊃⊂ ψ [Γ ].
The object P (Γ ) has a modal algebra structure induced by the logical connectives.

The syntactic hyperdoctrine sends arrows [t1, . . . , tm] : Γ → Γ ′ to

P ([t1, . . . , tm]) : P (Γ ′) → P (Γ ),

defined by P ([t1, . . . , tm])(φ) := φ[t1/y1, . . . , tm/ym].

Proposition 2. The syntactic hyperdoctrine P : Cop → MA is a modal hyper-
doctrine.

Proof. See Appendix B.

There is the obvious canonical interpretation (generic model) of TFOL+ S
in the syntactic hyperdoctrine, about which we can say the following:

Proposition 3. If φ [Γ ] is satisfied in the canonical interpretation in the syn-
tactic hyperdoctrine then it is deducible in TFOL+ S.

From this it follows that if φ [Γ ] is satisfied in any interpretation in any modal
hyperdoctrine, then it is deducible in TFOL+ S.

4.3 Hyperdoctrinal Translation Theorem for TFOL + S4

Having categorical semantics for a logic allows us to investigate that logic using
the structure of category theory; in the following, we compose an S4 modal
hyperdoctrine with a translation functor from modal to intuitionistic logic to
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get a hyperdoctrinal translation theorem. One direction of the Gödel-McKinsey-
Tarski translation between modal and intuitionistic logic (see, e.g., [18]) can be
expressed as the functor

Fix� : MA → HA

sending a modal algebra A to a Heyting algebra on the set {a ∈ A | �a = a},
and an MA-homomorphism h : A → B to an HA-homomorphism

Fix�(h) : Fix�(A) → Fix�(B).

For the functor to send modal algebras to Heyting algebras, the modal algebra
must satisfy all the axioms in Definition 1, and thus the translation theorem
only works for modal logics S4 and stronger.

Proposition 4. Let P : Cop → MA be a modal hyperdoctrine. The functor

PFix := Fix� ◦ P : Cop → HA

is an intuitionistic hyperdoctrine.

Proof. Firstly, we show that there are right and left adjoints, ∀�
π and ∃�

π , to

PFix(π) : PFix(Y ) → PFix(X × Y ),

where π : X × Y → Y is a projection function in C. Since P is a modal hyper-
doctrine, there exist maps ∀π,∃π : P (X × Y ) → P (Y ) right and left adjoint to
P (π). We restrict these maps to the domain PFix(X × Y ) to define the right and
left adjoints to PFix(π) as follows. For ψ ∈ PFix(X × Y ),

∀Fix
π (ψ) := Fix�(∀π(ψ)) and ∃Fix

π (ψ) := Fix�(∃π(ψ)).

To show that ∀Fix
π is right adjoint to PFix(π), let φ ∈ PFix(Y ) and suppose

PFix(π)(φ) ≤ ψ. Since PFix(π) is just the restriction P (π)|PFix(Y ), we have
P (π)(φ) ≤ ψ, and since P (π) is left adjoint to ∀π, this means φ ≤ ∀π(ψ). But
ψ ∈ PFix(X × Y ), so ∀Fix

π (ψ) = ∀π(ψ) and φ ≤ ∀Fix
π (ψ). Since this argument is

entirely reversible, the other direction of the bijection holds. A similar argument
can be made to show ∃Fix

π is left adjoint to PFix(π).

5 Higher-Order Modal Hyperdoctrine

From the hyperdoctrine perspective of “logic over type theory”, moving from
first-order logic to higher-order logic corresponds to adding more structure to
the indexing category C. After specifying the higher-order syntax, we define a
higher-order modal hyperdoctrine and prove soundness and completeness.
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5.1 Higher-Order Modal Logic

We present a higher-order version of a typed modal system S, called HoS. This
is achieved by two augmentations to the type structure of TFOL+ S: to enable
quantification over predicates, we add a special type of propositions to the sig-
nature; we also add rules for arrow and finite product types to the term calculus
to give a simply typed λ-calculus. These changes follow [12] and [19].

Simply Typed λ1×-calculus. In addition to the basic types of our signa-
ture Σ we add compound types by including the usual type formation rules for
arrow (exponent) types → and finite product types 1,×. We also add the usual
introduction, elimination and computation rules for terms of these types: for
arrow types, these are λ-abstraction, application, and β- and η-conversion; for
finite product types, these are pairing, projection, and their conversion rules.
Substitution is extended to these terms in the usual way (see [12, Section 2]).

Distinguished Type Prop. To be able to quantify over propositions as well as
inhabitants of types σ, we add the distinguished type Prop to those listed in the
signature. Like the other types, Prop has a list of variables x, y, z, . . . .

On top of the signature, terms-in-context M : σ [Γ ] and formulae-in-context
φ [Γ ] are given the same inductive definition as in Sect. 3. Terms of type Prop (in
context) are constructed as follows. For each relation symbol R ⊆ σ1, . . . , σn in
the signature, introduce a corresponding function symbol with codomain Prop:

R : σ1, . . . , σn → Prop.

Then for M1 : σ1 [Γ ], . . . , Mn : σn [Γ ], there is a term R(M1, . . . ,Mn) of type
Prop. Further terms of type Prop are constructed by the logical connectives:

φ : Prop [Γ ] ψ : Prop [Γ ]
φ ∗ ψ : Prop [Γ ]

for ∗ ∈ {∧,∨,⊃}

φ : Prop [Γ ]
∗φ : Prop [Γ ]

for ∗ ∈ {¬,�} φ : Prop [x : σ, Γ ]
∗x:σφ : Prop [Γ ]

for ∗ ∈ {∀,∃}

Substitution over these terms is defined in the usual way (see [12] for full details).
On top of this term calculus, we still have the judgement �HoS φ [Γ ], saying

that there is a derivation of φ [Γ ] as governed by the first-order logic rules in
Sect. 3. It remains to relate the notion of logical equivalence between formulae3
to the notion of equality of terms of type Prop via the following rule:

�HoS φ ⊃ ψ [Γ ] �HoS ψ ⊃ φ [Γ ]
φ = ψ : Prop [Γ ]

(Prop)
,

where φ = ψ : Prop is judgemental (computational) equality of terms, that is,
one term may be converted to the other following the rules of the λ-calculus.
Propositions are now terms internal to the type theory.
3 For convenience in the proofs to come, we express it as two separate conditionals
rather than the biconditional ⊃⊂.
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5.2 Modal Tripos

Definition 6. A modal tripos, or higher-order modal hyperdoctrine, is a modal
hyperdoctrine P : Cop → MA where the base category is cartesian closed and
there is a truth-value object Ω in C with a natural isomorphism

P (C) � HomC(C,Ω)

Modal tripos semantics are given by the following definition.

Definition 7. Fix a modal tripos P : Cop → MA. An interpretation �-� of
HoS in P is given by the interpretation in Definition 3, augmented as follows.

– arrow and finite product types, σ → τ and 1, σ × τ , are interpreted by expo-
nentiation �τ��σ� and categorical product �σ� × �τ� in C;

– the following cases are added to the inductively-defined interpretation of a
term: λ-abstraction, λ-application, pairing and projections are interpreted by
categorical transpose, evaluation, pairing and projection respectively in C;

– the type Prop is assigned to the truth-value object Ω in C, i.e. �Prop� = Ω;
– a term φ : Prop [Γ ] is assigned to the arrow �φ� : �Γ � → �Prop� in C that

corresponds to �φ [Γ ]� ∈ P (�Γ �) via the defining isomorphism of P .

5.3 Soundness and Completeness

Proposition 5. If φ [Γ ] has a derivation in HoEX , then it is satisfied in any
interpretation in any modal tripos.

Proof. Fix a modal tripos P and an interpretation �-� in P . With the soundness
of modal hyperdoctrine semantics established in Proposition 1, it remains to
show that satisfaction of the Prop rule is preserved. Suppose �φ ⊃ ψ� and �ψ ⊃ φ�
are true in P (�Γ �), and so we have


 ≤ �φ� ⊃ �ψ� and 
 ≤ �ψ� ⊃ �φ�.

By 2, this is equivalent to �φ� ≤ �ψ� and �ψ� ≤ �φ�, from which it follows that
�φ� = �ψ� in P (�Γ �). By the isomorphism in the definition of a modal tripos,
�φ�, �ψ� ∈ P (�Γ �) correspond to arrows �φ�, �ψ� : �Γ � → �Prop� in C that must
be equal. These arrows are the interpretations of the terms φ : Prop[Γ ] and
ψ : Prop[Γ ] respectively, and so we have:

�φ : Prop[Γ ]� = �ψ : Prop[Γ ]�

which is the same as �φ = ψ : Prop [Γ ]�.

Towards proving completeness, we are interested in the syntactic tripos of
HoS, which is defined in the same way as the syntactic hyperdoctrine. Here we
prove that it is in fact a modal tripos.

Proposition 6. The syntactic hyperdoctrine defined in 5 is a modal tripos.
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Proof. The existence of finite products and exponentials in C is guaranteed by
the existence of finite product types and function types in the type theory. To
show the existence of a truth value object, we need a context up to α-equivalence
satisfying the required isomorphism. Take Ω = x : Prop, noting that this is
essentially the same as taking Prop itself when considering x : Prop as a (single
variable) context up to α-equivalence. The required isomorphism then becomes

P (Γ ) � HomC(Γ, x : Prop).

By the definition of the syntax, for every formula φ [Γ ]—built from atomic for-
mulae R(M1, . . . ,Mn) [Γ ] and the logical connectives—there is a corresponding
term φ : Prop [Γ ]—built in the same way from the logical connectives and atomic
propositions R(M1, . . . ,Mn) : Prop [Γ ]. We may consider the term φ : Prop [Γ ]
as a context morphism in the base category of the modal tripos, that is, as a list
of terms of length one, [φ] : Γ → Prop. This gives the following isomorphism:

P (Γ ) � P (Γ,Prop).

To show that this isomorphism is natural, for contexts Γ = σ1, . . . , σn and
Γ ′ = τ1, . . . , τm, for any morphism [t1, . . . , tm] : Γ → Γ ′ in the base category,
where ti : τi [Γ ], we require that the following square commutes:

P (Γ ′) HomC(Γ ′,Prop)

P (Γ ) HomC(Γ,Prop)

P ([t1,...,tm])

PaF′
Γ

HomC([t1,...,tm],x:Prop)

PaFΓ

where PaF (“Propositions as functions”) denotes the isomorphism. This is given
by the calculation:

HomC([t1, . . . , tm], x : Prop) ◦ PaFΓ (φ [Γ ′])
= HomC([t1, . . . , tm], x : Prop)(φ : Prop [Γ ′])
= φ[t1/x1, . . . , tm/xm] : Prop [Γ ]
= PaFΓ (φ[t1/x1, . . . , tm/xm][Γ ])
= PaFΓ ◦ P ([t1, . . . , tm])(φ[Γ ′]).

It is straightforward to see that if φ [Γ ] is valid in the canonical interpretation
in the syntactic tripos, then it is provable in HoS. The standard counter-model
argument then immediately gives completeness. Combined with soundness, we
obtain the following theorem.

Theorem 1. φ [Γ ] is provable in HoS iff it is valid in any interpretation in
any modal tripos.
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6 Conclusion

We have established both first-order and higher-order completeness for non-
normal modal logics via hyperdoctrine semantics; we have also shown a hyper-
doctrinal translation theorem for normal modal hyperdoctrines. The straightfor-
ward nature of these results is demonstrative of the power of hyperdoctrine.

Coalgebraic logic has been highly successful for a unified treatment of var-
ious propositional modal logics [4,17], and in future work, we plan to apply
coalgebraic logic, especially duality-theoretical results such as in [14], to con-
struct models of modal hyperdoctrines; the predicate functors of Stone-type
dual adjunctions often form hyperdoctrines. More ambitiously, we plan to extend
coalgebraic modal logic to first-order and higher-order settings via hyperdoctrine
semantics.

Acknowledgments. We thank the anonymous reviewers for their helpful feedback.
This work was supported by JST (JPMJMS2033-02; JPMJFR206P).

A Soundness of Modal Hyperdoctrine Semantics

Proof. Fix a modal hyperdoctrine P and an interpretation �-� in P . The proof
is by induction on the derivation of φ [Γ ], which amounts to checking that all
axiom schemata are satisfied and that all rules preserve satisfaction.

For the propositional fragment, beginning with rule RE, suppose �φ ⊃⊂ ψ�
is true in P (�Γ �). Expanding the abbreviation ⊃⊂ and taking the interpretation
of the connectives as in Definition 3, we have:

�φ ⊃ ψ ∧ ψ ⊃ φ� = �φ� ⊃ �ψ� ∧ �ψ� ⊃ �φ�.

It is a theorem in a Boolean algebra that the right-hand side implies �φ� = �ψ�.
Therefore, ��φ� = ��ψ�, which is the interpretation of the formula �φ ⊃⊂
�ψ [Γ ], and so the rule RE preserves satisfaction. The rule MP may be checked
in a similar way.

For the modal axiom schemata, satisfaction of schema E corresponds to the
definition of the ♦ operator in a modal algebra, so ♦�φ� = ¬�¬�φ� in P (�Γ �).
The interpretation of schema M is:

��(φ ∧ ψ) ⊃ (�φ ∧ �ψ)� = �(�φ� ∧ �ψ�) ⊃ (��φ� ∧ ��ψ�),

so M is satisfied in the interpretation if �(�φ� ∧ �ψ�) ≤ (��φ� ∧ ��ψ�), by
the equivalent condition for satisfaction of an implication established in 2. This
corresponds clearly to condition MA on the operator.

In a similar way, we can show that schema N corresponds to condition NA and
C corresponds to CA. It is also clear that we may add more axiom schemata to
TFOL+EX to get a system TFOL+ S, and that these schemata are satisfied
in the interpretation if we add corresponding conditions on the modal operator
in the algebra. Satisfaction of the axiom schemata for the non-modal part of the
proportional logic may be verified in the same way.
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For the first-order fragment, the axiom schema ∀-Elimination is satisfied if
and only if the interpretation �(∀xφ)[x1, . . . , xn] ⊃ φ� is true in P (�σ� × �Γ �).
By 2, we can do this by showing

�(∀xφ)[x1, . . . , xn]� ≤ �φ�.

The logical expression on the left-hand side, (∀xφ)[x1, . . . , xn], is a formula in
context [x : σ, Γ ], but which does not contain x, and so corresponds to weakening
of the context. By the semantics of substitution, we have:

�(∀xφ)[x1, . . . , xn] [x : σ, Γ ]� = P (π)(�∀xφ [Γ ]�),

and by the interpretation of the universal quantifier,

P (π)(�∀xφ [Γ ]�) = P (π)(∀π(�φ [x : σ, Γ ]�)).

This turns the desired statement into another form of the adjointness condition
for universal quantification, that is, the counit characterisation:

P (π)(∀π(�φ [x : σ, Γ ]�)) ≤ �φ [x : σ, Γ ]�.

To show that the ∀-Introduction rule preserves satisfaction, suppose

�φ[x1, . . . , xn] ⊃ ψ�

is true in P (�σ� × �Γ �), or equivalently, �φ[x1, . . . , xn]� ≤ �ψ�. Then we need to
show that �φ ⊃ ∀xψ� is true in P (�Γ �), or equivalently, �φ� ≤ ∀σ�ψ�. This logical
rule directly translates to one direction of the adjointness correspondence when
we observe that the formula φ[x1, . . . , xn] [x : σ, Γ ] is weakening of the formula
φ[Γ ]. By the interpretation of substitution,

�φ[x1, . . . , xn] [x : σ, Γ ]� = P (π)(�φ [Γ ]�).

But if P (π)(�φ�) ≤ �ψ� holds, then by the adjointness condition for universal
quantification, �φ� ≤ ∀σ�ψ� as required.

For the Instantiation rule, suppose 
 ≤ �φ� in P (�Γ �). Applying the (order-
preserving) modal algebra homomorphism

P (〈�M1 : σ1 [Γ ′]�, . . . , �Mn : σn [Γ ′]�〉) : P (�Γ �) → P (�Γ ′�)

to both sides, we get:

P (〈�M1 : σ1 [Γ ′]�, . . . ,�Mn : σn [Γ ′]�〉)(
)
≤ P (〈�M1 : σ1 [Γ ′]�, . . . , �Mn : σn [Γ ′]�〉)(�φ [Γ ]�).

Since modal algebra homomorphisms preserve 
, and by the semantics of sub-
stitution, we have 
 ≤ �φ[ �M/�x]� in P (�Γ ′�).
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B Completeness of Modal Hyperdoctrine Semantics

Proof. Firstly, the base category C has finite products: for Γ = σ1, . . . , σn and
Γ ′ = τ1, . . . , τm, define Γ × Γ ′ as σ1, . . . , σm, τ1, . . . , τn. We then have, as an
associated projection,

[y1, . . . , ym] : Γ × Γ ′ → Γ ′,

where the yi are variables yi : τi [Γ, Γ ′]. The other projection is defined similarly,
and it is straighforward to show that this gives a categorical product in C.

Next, we check that the codomain of P is in fact the category of modal
algebras and structure-preserving homomorphisms. For a context Γ in C, P (Γ )
forms a modal algebra with operations induced in the expected way by the logical
connectives. Considering only the non-modal fragment of the logic, P ([t1, . . . , tn])
is a Boolean algebra homomorphism since substitution commutes with all the
non-modal logical operations. To extend this to a modal algebra homomorphism,
we require that P ([t1, . . . , tn]) preserves the modal operator � and any extra
conditions placed on �. This follows from the fact that P ([t1, . . . , tn]) performs
substitution into a formula, and the syntax specifies that � commutes with
substitution.

Proceeding to the quantifier structure, universal quantification is given by
a right adjoint to P (π) : P (Γ ′) → P (Γ × Γ ′), where π : Γ × Γ ′ → Γ ′ is the
second projection in C. Let ψ be a formula in P (Γ × Γ ′); since the following
arguments respect equivalence, we will identify ψ with the equivalence class to
which it belongs. Define ∀π : P (Γ × Γ ′) → P (Γ ′) by

∀π(ψ) := ∀x1 . . . ∀xnψ,

with the formula on the right hand side denoting the corresponding equivalence
class.

Suppose φ ∈ P (Γ ′); to show that ∀π is the right adjoint of P (π) means
showing P (π)(φ) ≤ ψ in P (Γ × Γ ′) if and only if φ ≤ ∀x1 . . . ∀xnψ in P (Γ ′).
For the first direction, assume P (π)(φ) ≤ ψ in P (Γ × Γ ′). Since P (π)(φ) cor-
responds to weakening of the context of φ [Γ ] to φ[y1, . . . , ym] [Γ, Γ ′], we have
φ[y1, . . . , ym] ≤ ψ in P (Γ × Γ ′). The partial order in P (Γ × Γ ′) is induced
by its lattice structure, so the above ordering corresponds to the equation
φ[y1, . . . , ym] ∧ ψ = φ[y1, . . . , ym]. By the definition of the syntactic hyperdoc-
trine, we can make the following derivability statement:

�TFOL+S φ[y1, . . . , ym] ∧ ψ ⊃⊂ φ[y1, . . . , ym] [Γ, Γ ′]

from which it follows that

�TFOL+S φ[y1, . . . , ym] ⊃ ψ [Γ, Γ ′].

Repeated application of ∀-Introduction gives

�TFOL+S φ ⊃ ∀x1 . . . ∀xnψ [Γ ′],
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from which it follows that

�TFOL+S φ ∧ ∀x1 . . . ∀xnψ ⊃⊂ φ [Γ ′].

Translating back to the modal algebra, this means φ∧∀x1 . . . ∀xnψ = φ in P (Γ ′),
and so φ ≤ ∀x1 . . . ∀xnψ in P (Γ ′), as required.

For the other direction, assume φ ≤ ∀x1 . . . ∀xnψ in P (Γ ′). Using the same
reasoning as before to translate from a statement in the modal algebra to one in
the logic, we have

�TFOL+S φ ∧ ∀x1 . . . ∀xnψ ⊃⊂ φ [Γ ′],

from which it follows:

�TFOL+S φ ⊃ ∀x1 . . . ∀xnψ [Γ ′].

Applying the Instantiation rule to weaken the context gives

�TFOL+S (φ ⊃ ∀x1 . . . ∀xnψ)[y1, . . . , ym] [x1 : σ1, Γ
′],

where we substitute for the variables yi : τi [Γ ′] variables yi : τi [x1 : σ1, Γ
′].

Since substitution commutes with ⊃, we have:

�TFOL+S φ[y1, . . . , ym] ⊃ (∀x1 . . . ∀xnψ)[y1, . . . , ym] [x1 : σ, Γ ′] (4)

We will prove φ[y1, . . . , ym] ⊃ ∀x2 . . . ∀xnψ [x1 : σ1, Γ
′] using the deduction

theorem. Assume

�TFOL+S φ[y1, . . . , ym] [x1 : σ1, Γ
′], (5)

then applying rule MP (modus ponens) to 5 and 4 gives:

�TFOL+S (∀x1 . . . ∀xnψ)[y1, . . . , ym] [x1 : σ1, Γ
′]. (6)

The following is an instance of the ∀-Elimination schema:

�TFOL+S (∀x1∀x2 . . . ∀xnψ)[y1, . . . , ym] ⊃ ∀x2 . . . ∀xnψ [x1 : σ1, Γ
′]. (7)

Applying modus ponens to 6 and 7:

�TFOL+S ∀x2 . . . ∀xnψ [x1 : σ1, Γ
′].

Since this follows from the assumption that φ[y1, . . . , ym] [x1 : σ1, Γ
′] is derivable,

we have
�TFOL+S φ[y1, . . . , ym] ⊃ ∀x2 . . . ∀xnψ [x1 : σ1, Γ

′]

by the deduction theorem. Repeating this argument, we get

�TFOL+S φ[y1, . . . , ym] ⊃ ψ [Γ, Γ ′],
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and translating this back into a statement in the modal algebra P (Γ ′), we have
P (π)φ ≤ ψ.

To show that the corresponding Beck-Chevalley condition is satisfied, let
Γ ′′ = v1 : μ1, . . . , vl : μl be a context up to α-equivalence. Then for every
context morphism [s1, . . . , sm] : Γ ′′ → Γ ′ with si : τi [Γ ′′] the following diagram
must commute:

P (Γ × Γ ′) P (Γ ′)

P (Γ × Γ ′′) P (Γ ′′)
�

P (idΓ ×[s1,...,sm])

�∀π

�
P ([s1,...,sm])

�
∀π′

where π′ : Γ × Γ ′′ → Γ ′′ is a projection. Since we specified in the term calcu-
lus that the quantifiers commute with substitution, we can make the following
argument, for ψ ∈ P (Γ × Γ ′):

P ([s1, . . . , sm]) ◦ ∀π(ψ) = P ([s1, . . . , sm])(∀x1 . . . ∀xnψ)
= (∀x1 . . . ∀xnψ)[s1/y1, . . . , sm/ym]
= ∀x1 . . . ∀xn(ψ[s1/y1, . . . , sm/ym])
= ∀π′(ψ[s1/y1, . . . , sm/ym])
= ∀π′ ◦ P (1Γ × [s1, . . . , sm])(ψ)
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