Formally Verified Invariants of Vote Counting Schemes -

Florrie Verity
The Australian National University

ABSTRACT

The correctness of ballot counting in electronically held elec-
tions is a cornerstone for establishing trust in the final re-
sult. Vote counting protocols in particular can be formally
specified by as systems of rules, where each rule application
represents the effect of a single action in the tallying process
that progresses the count. We show that this way of formal-
ising vote counting protocols is also particularly suitable for
(formally) establishing properties of tallying schemes. The
key notion is that of an invariant: properties that transfer
from premiss to conclusion of all vote counting rules. We
show that the rule-based formulation of tallying schemes al-
lows us to give transparent formal proofs of properties of the
respective scheme with relative ease. As our proofs are based
on the specification of vote counting protocols, rather than a
program that implements them, we are guaranteed that the
property holds for every possible specification-confirming
implementation of the respective protocol. This in particu-
lar includes the vote counting programs that are automati-
cally extracted from the specification. We demonstrate this
point by means of two examples: the monotonicity criterion
for majority (first-past-the-post) voting, and the majority
criterion for a simple version of single transferable vote.

1. INTRODUCTION

Our trust in traditional paper-based elections largely de-
rives from the fact that all stages of the process are wit-
nessed by scrutineers, variously members of the general pub-
lic or delegates nominated by stakeholders that ensure, and
testify to, proper procedures being followed. In an elec-
tronic voting context [14], this is replicated by the concept
of end-to-end verifiability and universal verifiability. End-
to-end verifiable systems allow the voters to verify that their
vote has been correctly recorded, not been tampered with
in (elecctronic) transit to the counting station and has been
correctly included in the electronic ballot box. A voting

*Coq sources that accompany this paper are available from
users.cecs.anu.edu.au/~ dpattinson/Software/.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

Dirk Pattinson
The Australian National University

system is universally verifiable if any member of the general
public has means to determine whether all ballots cast have
been counted correctly. End-to-end verifiability is usually
achieved by complex cryptographic methods and generate
receipts that voters can use to verify integrity of their bal-
lot, without revealing the ballot content. None of the current
voting systems in existence [16, 4, 11, 5] offers universal ver-
ifiability of the tallying in elections that rely on complex,
preferential voting schemes such as single transferable vote
used in the majority of elections in Australia. That is, there
is no way for voters or political parties to verify the correct-
ness of the count.

This is mediated, for example by the Australian Elec-
toral Commission, by publishing both the ballots cast, and
scrutiny sheets that detail the proceeds of the count, on the
web so that individuals (or political parties) can run their
own vote-counting software on the published data. Our ex-
perience indicates that while this is likely to generate the
same election result, it is nearly impossible to generate tal-
lies that perfectly match those published on the web. The
reason for this is one of under-specification: the data pub-
lished by the electoral commission is noisy in the sense that
some ballots assign the same preference to more than one
candidate, or omit certain preferences altogether and the
commission does not specify how votes of this kind are to
be accounted for. More generally, the specification of the
vote counting scheme is usually given in the form of a le-
gal document which is not always unambiguous, specifically
concerning rare corner cases.

The correctness of the implementation of vote counting
schemes has therefore been subject to a number of approaches
based on formal methods. One generally distinguishes be-
tween heavy weight and light weight approaches, where the
former involve the use of interactive theorem provers to es-
tablish mathematical correctness, and the latter rely on au-
tomated or semi-automated techniques. In the domain of
electronic voting, it has been recognised that light-weight
approaches are not practical for the task at hand [6, 2] and
heavy-weight methods, i.e. the use of interactive theorem
provers, are necessary to give the desired correctness guar-
antees. In the context of formal verification, the styles of
specifying vote counting schemes vary considerably, and usu-
ally some variant of type theory or higher-order logic is used
to express the desired properties, see e.g. [7]. In contrast to
directly encoding vote counting schemes, it has been advo-
cated in [15] that the best way of making the vote counting
scheme precise is to give a formal specification by means
of rules. The rule-based specification of voting protocols



is centred around states of the counting process that may
be thought of as photographic snapshots of a (n imagined)
room where counting takes place. More abstractly, a state
records all information that are relevant for the counting
process at a given point in time. A rule then specifies how
this state may be manipulated by an (imagined) official pro-
gressing the count. An example of such an action would be
“take a ballot from the pile of uncounted votes, update the
tally of the candidate named as first preference, and put
the ballot paper onto the pile of first-preference votes for
this candidate”. As such, the description of the state invari-
ably contains the running tally, a list of uncounted ballot
papers, and, for every candidate, a list of votes counted in
their favour. The count then progresses, in analogy with
the paper-based process, by applying rules that (correctly)
manipulate the state of the count, until winners can be de-
clared. As a consequence, we can understand a (formal)
specification of a voting scheme as a set of rules that ma-
nipulate the state of the count. It has been argued in [15]
that this way of specifying voting schemes is both natural
and leads to a receipt (the sequence of counting rules lead-
ing to the election outcome) that is both precise and can be
checked by correctness, i.e. provides a universally verifiable
receipt of the correctness of the count.

In this paper, we argue that the rule-based approach to
the specification of voting protocols is also well-suited to es-
tablishing properties of voting protocols specified in this way,
and so provides an orthogonal check on the correctness of the
specification. We demonstrate this by re-visiting two pro-
tocols, simple plurality voting or first-past-the-post (FPTP)
and a simple version of single transferable vote (STV), both
described in detail in Sections 2.1 and 2.2, respectively. In
plurality voting, every voter votes for precisely one candi-
date, and the candidate with the highest tally wins. It
is known in the literature that this procedure satisfies the
monotonicity criterion:

If a candidate wins an election, they will still
win the election if any number of ballot papers
have been changed in their favour.

Here, by changing a ballot paper in the favour of a candi-
date we mean replacing the ballot paper by a vote for this
candidate.

Single transferable vote elections, by contrast, typically
have more than one winner and are used to elect a set of
representatives in a single poll. Ballots are not votes for
a single candidate, but are a list of candidates, ordered by
voter preference. Votes are counted by successively eliminat-
ing candidates, and transferring votes to the next preference
on the ballot paper, until candidates have reached a given
quota. Here, the property that we formally establish is ma-
jority:

If a candidate is listed as first preference on
more than 50% of the ballot papers, (s)he will be
declared a winner.

Our technical contribution are formal proofs [10] obtained
using an interactive theorem prover (we use Coq [3]) of the
monotonicity property of FPTP, and the majority criterion
for STV. These proofs are obtained by isolating suitable in-
variants, that is, mathematical relations that hold at every
stage of the count, and will ultimately imply the desired

property once counting terminates. We emphasise that we
do not prove these properties on the basis of having an im-
plementation of a concrete counting scheme (as done e.g. in
[9] for plurality voting) but instead are basing our proofs on
a (formal) specification of the scheme. As a consequence,
every implementation that (provably) conforms to the spec-
ification, including in particular those synthesised from the
specification itself, can be guaranteed to enjoy this property.
In other words: the implementation of vote counting accord-
ing to the FPTP and STV schemes that we have synthesised
from the specification in [15] are automatically guaranteed to
satisfy monotonicity (resp. majority) criterion.

Formal proofs that involve properties of formal specifi-
cations like the two criteria discussed above also serve a
function beyond establishing that the criteria in fact hold:
they provide a basic sanity check of the formal specification.
Just as for programs, humans invariably introduce errors
into specifications, rendering the fact that a program imple-
ments a specification virtually useless. Giving formal proofs
that the specification satisfies the expected properties thus
increases our trust in the correctness of the specification as
such. In an area such as electronic voting where we would
demand that programs conform to formal specification, we
see the process of validating specifications as particularly
important.

On a conceptual level, we demonstrate that rule-based
specifications can not only capture the specifics of voting
protocols in a natural way, but are moreover well-suited to
their analysis. By giving loose specifications of the protocols
under scrutiny we achieve coverage of more than one variant
(or implementation) of the scheme. This introduces a very
convenient layer of abstraction, as any implementation of a
voting protocol would reasonably be expected to satisfy its
specification, and our proofs entail that any specification-
conforming implementation will satisfy the criteria under
consideration. That is, there is no need to re-establish any
criteria that have been established on the level of specifi-
cation, as all implementations (in particular including the
one that has been synthesised from the specification) are
automatically guaranteed to conform. Moreover, by giving
formal proofs that are checked by an interactive prover, we
obtain ultimate assurance of the correctness of the proper-
ties claimed.

In the medium term, we believe that our work can lead
to the adoption of possibly more complex but fairer voting
schemes where the complexity is tamed by giving formal
proofs, both of desirable properties and correctness of their
execution of the voting scheme itself.

Related Work. Properties of vote counting schemes are
usually established by means of pen-and-paper proofs, see
e.g. [12], and there is very little work on formalising prop-
erties of tallying schemes in a theorem prover. One notable
exception is [9] where the monotonicity criterion is formally
verified for an implementation of plurality counting. Our
work, in contrast, establishes monotonicity for all imple-
mentations that conform to the specification that we give.
The formalisation of the majority criterion is, to the best of
our knowledge, new. We have already mentioned other ap-
proaches to the formal verification of vote counting schemes,
and our work is based on the precursor paper [15]. Our
formulation of Single Transferable Vote is taken from that
paper and is the same as that of [8] where linear logic was
used to specify STV in the Twelf logical framework [17].



In contrast to our formulation in the Coq theorem prover,
the way in which STV is embedded in Twelf does not allow
reasoning about meta-properties of the formalisation.

2. VOTE COUNTING PROTOCOLS AS RULE

BASED SYSTEMS

We recall the formalisation of voting protocols as rule-
based systems [15]. This formalisation tries to mirror hand-
counting of votes as closely as possible, and is based on two
basic building blocks:

1. States of vote counting are the electronic equivalent
of the vote counting process at any particularly given
point in time. One way of thinking about states is
as representing snapshots of the room in which votes
are hand-counted, and states variously represent com-
binations of (piles of) uncounted votes, stacks of votes
counted in favour of different candidates, a running
tally etc.

2. Vote counting rules describe the actions that allow us
to progress one state to another according to the count-
ing scheme. The simplest example is counting of a sin-
gle vote: a ballot paper is removed form the list of
uncounted votes, placed on the stack of votes counted
in favour of the named candidate, and the tally is up-
dated. That is, every rule describes an action that
progresses the count.

For concretely given protocols, we distinguish between fi-
nal states that represent the outcome of vote counting (usu-
ally a winner or set of winners) and intermediate states, i.e.
snapshots of the counting process where rules still need to
be applied before a winner can be determined, and initial
states (in which vote counting commences). A sequence of
correctly applied rules that leads from an initial to a final
state can then be regarded as evidence of the correct ap-
plication of the voting protocol. We argue in [15] that this
allows for universal verifiability of the vote counting process
and minimises the gap between a mathematical formalisa-
tion and legislative text. Here, we argue that it is also very
suitable to formally establish properties of voting protocols
in a theorem prover, the validity of which gives additional
assurance of the correctness of the specification. We give
two main examples of voting rules.

2.1 First-Past-The-Post (Plurality) Voting

Given a set C of candidates, every ballot is a vote for pre-
cisely one candidate, and we can therefore identify a ballot
with the candidate being voted for. First past the post, or
plurality voting takes a list of ballots (candidates) to pro-
duce a tally, and a candidate with the highest tally is then
declared winner. We do not stipulate how this candidate
is determined in case of a tie. Schematically, vote counting
proceeds as follows:

1. Given a set b of ballots, compute the tally t(c) to be
the number of voters that have voted for candidate c.

2. A candidate ¢ is a winner, if no other candidate has
received more votes.

Remark 1. Despite the fact that elections counted accord-
ing to this scheme typically yield a single winner, our formu-
lation does not specifically mandate this. This is reflected in

the second point above where we specifically speak about a
winner, rather than the winner. Any implementation would
have to impose tie-breaking rules that we do not want to
pre-empty in the specification. As a consequence, the mono-
tonicity property established here will hold for any imple-
mentation no matter how ties are broken.

For the purpose of our rule-based formulation, the states
of FPTP counting are either
e intermediate states that are composed of a list of un-
counted ballots us € List(C') and a running tally ¢ :
C — N, written as state(us, t), or

e final states that declare that a candidate c is a winner,
written as winner(c).
The counting process itself is fully described by just two
rules. The first rule
state(u :: us, t)
state(us, t{u — t(u) + 1])

describes that given a list u :: us of uncounted votes that
begins with a single (uncounted) vote u and continues with
a list us of (more) uncounted votes, together with tally ¢,
we can progress the count by counting the vote u. Recall
that we identify a candidate with a vote for this candidate
so that u € C is in fact a candidate. The given state can be
progressed to a state where the remaining uncounted votes
are us and the tally has been updated: the notation t[c —
t(c) 4+ 1] indicates the function t[c — t(c) + 1](d) = t(d) for
d # ¢ and t[c — t(c) + 1])(¢) = t(c) + 1. The second rule
describes that winners are declared once all votes have been
counted, that is, the list of uncounted votes has been reduced
to the empty list []. If this is the case, and a candidate ¢
has received at least as many votes as all other candidates,
(s)he is declared a winner. In or formulation, the rule takes
the following form:

w if t(c) > t(d) for all d € C
winner(c)
Initial states are states where the list of uncounted ballots
is precisely the list of ballots cast, and the tally records 0
for each candidate. To formalise this, we need access to the
initial set of ballots cast. This gives rise to the notion of
Judgement, and a judgement (in FPTP counting) is a state,
together with the set of initial ballots. We write

b b state(u, t) b - winner(c)

for the judgement that state(u,t) (resp. winner(c)) is a valid
intermediate (final) state of vote counting where b is the list
of ballots cast. Our initial judgement then becomes

b state(p.g) | e} =0 foralleeC

and the two rules above are just extended with the param-
eter and thus become
b b state(u :: us, t)
b I state(us, tfu — t(u) + 1])

b I state([], t)

i >
b winner(c) if t(c) > t(d) for all d € C

As a consequence, if the judgement b F winner(c) can be
obtained by applying the above rules, candidate c is one of
the possible winners of the election where ballots b have been
cast.



2.2 Single Transferable Vote

We describe a proof-of-concept formalisation of a system
of single transferable vote, and as for FPTP vote counting,
our specification is loose in the sense that it may allow for
more than one rule to be applied in any given state of vote
counting. It is parameterised by a list b of ballots, the num-
ber s of seats to be elected, and the quota ¢ (the number
of votes needed to elect a candidate) for the election pro-
cess. Single transferable vote comes in many variants and
we recall the description of STV from [15, 8]:

1. if candidate has enough first preference to meet the
quota, (s)he is declared elected. Any surplus votes for
this candidate are transferred.

2. if all first preference votes are counted, and the num-
ber of seats is (strictly) smaller than the number of
candidates that are either (still) continuing or elected,
a candidate with the least number of first preference
votes is eliminated, and her votes are transferred.

3. if a vote is transferred, it is assigned to the next can-
didate (in preference order) on the ballot.

4. vote counting finishes if either the number of elected
candidates is equal to the number of available seats,
or if the number of remaining hopeful candidates plus
the number of elected candidates is less than or equal
to the number of available seats.

Remark 2. Single transferable vote is used in many ju-
risdictions, in many variants. The choice of the particular
variant of STV described here is therefore necessarily some-
what arbitrary. Our selection is guided by the fact that
precisely this formulation of STV has been modelled logi-
cally before [8]. The formulation of this particular variant is
very loose. In particular, no fixed order of counting ballots
is prescribed, and the set of ballots transferred to lower-
ranked candidates can depend on the order in which ballots
are counted. An implementation of this specification of STV
therefore has to fix a particular order. By not working with
a particular implementation of STV and rather establish-
ing the majority criterion for this particular specification of
STV, we obtain that the monotonicity criterion is satisfied,
no matter what ballot order is chosen by any particular im-
plementation. As regards concrete implementations of STV
counting, our approach guarantees that the implementation
of STV that was synthesised from the specification in [15]
satisfies the majority criterion, as it automatically complies
with the specification.

We now describe the rule-based specification of STV, given
a set C of candidates. Here, ballots are lists of candidates
(in preference order) and we write ballot = List(C') to denote
individual ballots. When a candidate is eliminated during
the count, the ballots counted in their favour have to be
transferred to the next preference. As a consequence, we
need to remember which ballots were counted for each can-
didate, as those will be the ballots that are transferred when
candidates are eliminated. In addition to this, we need to
keep track of which candidates are already marked as elected
as votes for elected candidates are automatically transferred
to the next listed preference. Finally, we need to remem-
ber continuing (still hopeful) candidates. The states of STV
counting are therefore of one of the following two forms:

e intermediate states that take the form state(u, a, ¢, h, €)
where u are the uncounted ballots, a : C' — List(ballot)
is an assignment that records, for each candidate ¢ €
C, the list a(c) of ballots counted in ¢’s favour. The
function t : C' — N is the current tally of first prefer-
ences, and e, h are the lists of elected and continuing
(hopeful) candidates.

e final states that we write as winners(w) where w €
List(C) is the list of election winners.

As already remarked at the beginning of the section, STV
counts are parametrised by the quota ¢ € N of first pref-
erence votes that a candidate needs to accumulated to be
elected, the number s of seats to be filled, and the set b of
ballots cast. A judgement in STV counting then takes one
of the following forms

(b,q,s) - state(u, a, t, h, e) (b, g, s) - winners(w)

where w € List(C') is the list of election winners. We read the
first judgement as “in an election where ballots b have been
cast, the quota is ¢ and s seats are to be filled, state(u, a, t, h, )
is a valid state of vote counting”. The second judgement is
read in the same way, but declares the winners. Vote count-
ing starts by considering all votes as uncounted, that is, we
begin the stepwise application of rules from a judgement of
the form

(b,4q,s) - state(b, a, t, [c1, . . .

senls )

where the first component b is the list of all votes cast, i.e.
all votes are uncounted initially, a(c) = [] is the null assign-
ment that maps every candidate to the empty list of votes
as no votes have yet been counted in the candidate’s favour.
The penultimate component, the list of continuing candi-
dates, is the list of all candidates [c1,. .., c,] assuming that
C ={c1,...,cn} and the last component, the list of elected
candidates is empty. We give an exemplaric description of
three vote counting rule (transfer of votes, election of a can-
didate, and declaring election winners) and refer to [15] for a
full description. In the simple STV protocol under consider-
ation here, votes for candidates that are no longer continuing
are transferred to the next preference on the ballot paper.
As a rule, this takes the form

(b,q,s) I state(u, a,t, h,e)
(b, q,s) - state(u’, a,t, h,e)

and the rule may be applied if u = uo++[f::fs]++u1 is the
list of uncounted votes containing a vote for first preference
f and (remaining) preferences fs (we write ++ for the con-
catenation of lists), the candidate f at first position is no
longer continuing (f ¢ h) and the new list ' of uncounted
votes has the form ui++[fs]+-+ue, i.e. the first preference
has been removed from the ballot, and all the other data
doesn’t change.
The rule for electing a candidate takes the form

(b,q,s) - state(u, a,t, h,e)
(b,q,s) - state(u, a,t, h',e’)

and the rule may be applied if there is a candidate ¢ € h so
that the following conditions are satisfied:

e c € h, i.e. the candidate c is continuing (still hopeful)



e t(c) =g, i.e. ¢ has reached enough votes to be elected
e 1/ is the list h with ¢ removed
e ¢’ is the list e with c inserted

Note that this just changes the set of elected and continuing
candidates, and all other data is unaffected.

The count in single transferable vote terminates as soon as
either enough candidates have been elected, or the number
of elected and continuing candidates are less than or equal
to the number of seats. The first rule takes the form

(b,q,s) I state(u, a, t, h,e)
(b,q, s) F winners(e)

if le] =s

i.e. once the number |e| of elected candidates has reached
the number of seats, the candidates marked as elected are
declared the winners of the election.

Remark 3. There are many different ways to concretely
formulate the voting protocols here. While we represent un-
counted votes as lists (of ballot papers), a formalisation that
represents them as multisets would be equally viable. The
choices made here are dictated by ease of implementation in
a theorem prover that we describe in the next section.

Both for first past the post and single transferable vote,
our specification is loose in the sense that the outcome is
not fully determined by the specification. For FPTP, this
is a consequence of the rule that determines the winner: if
there’s more than one candidate with maximal number of
votes, both can be chosen to be the (only) winner. In STV,
the same applies when candidates are eliminated (any can-
didate with least number of first preferences can be elim-
inated), and also precisely which votes are transferred to
second preferences depends on the order in which votes are
counted. While this may be undesirable for a vote counting
protocol per se it is useful for the purpose of the present
paper in that we show that all implementations of vote
counting (that may impose additional restrictions on how
/ in which order counting rules may be applied) satisfy the
properties we establish here.

3. FORMALISATION

Both voting protocols have been formalised in the Coq
theorem prover [3]. The formalisation is a direct represen-
tation of the rules using a dependent inductive type. Math-
ematically, we think of a sequence of correctly applied vote
counting rules that ends in declaring a winner as evidence
for correct counting. Generalising this idea to also include
intermediate steps, this is precisely what we achieve using
(depenent) inductive types.

Both formulations are parameterised (by the list of ballots
cast, for FPTP, and by the list of ballots, the number of
seats and the quota, for STV). Ignoring the parameters that
remain fixed, the inductive type takes the form

Pf : Judgement — Type

so that, for a judgement j, Pf(j) is the type whose elements
are proofs of the fact that j is a judgement that is derivable
by means of the counting rules. That is, elements Pf(j)
represent evidence of the fact that j is a judgement that
has been derived correctly. This evidence is constructed
inductively:

e no evidence is needed to construct an initial state of
counting

e If we have evidence of the fact that a judgement j rep-
resents a correct state of counting (given by an element
of Pf(5)), and j/;j' is a counting whose premiss is j and
whose conclusion is a judgement j', then we can con-
struct evidence of j' being a correct state of counting
by extending the evidence for j’s correctness with the
rule application that leads from j to j'.

As a consequence, evidence for the correctness of a judge-
ment j is a list of rule applications, starting with an ini-
tial judgement, and ending in the judgement j. The induc-
tive nature of the type allows us to prescribe how evidence
may be constructed. Accordingly, every counting rule cor-
responds to one constructor of the inductive type that also
embodies the conditions that need to be met for the con-
structor to be applied.

3.1 First-Past-The-Post Voting

The heart of the formalisation of FPTP is an inductive
type as explained above. In the syntax of Coq, we obtain
the specification given in Table 1. Here, each rule is rep-
resented as a constructor of the (dependent) inductive type
Pf, and the side conditions of a rule are represented as logi-
cal constraints that need to be satisfied for the constructor
to be applicable.

The Cog-code above uses several auxiliary definitions, the
most important one that of a type Node that represents a
state of vote counting, and is given by

(* intermediate and final states in FPTP counting *)
Inductive Node :=

winner : cand -> Node
| state (1ist cand) * (cand -> nat) -> Node.

so that a node is either a final state that stipulates the
election winner (via the first constructor), or an intermedi-
ate state that records the uncounted ballots and the running
tally (via the second constructor). Moreover, nty is the null
tally that records zero votes for every candidate, [x1,. .., X
is Cog-notation for the list comprising elements x1,...,z,
(in particular [] is the empty list) and ++ is list concatena-
tion. The main aspect to note is that the rules, presented in
the previous section, can be transcribed into Coq’s syntax
almost verbatim.

3.2 Single Transferable Vote

As for FPTP, we can represent the rule based formulation
of the voting protocol directly within a theorem prover. As
per the rule-based description of STV in the previous sec-
tion, intermediate states of vote counting are more complex
(more data needs to be represented) and we now have a list
of winners rather than a single winner. The type Node of
(final and intermediate) states of STV counting then takes
the following form

(* intermediate and final states in stv counting *)
Inductive Node :=

state: (x*x intermed. states **)
list ballot (* uncounted votes *)
* (cand -> list ballot) (* assignment *)
* (cand -> nat) (* tally *)

* (list cand) (* continuing *)



Inductive Pf (b: list cand) : Node -> Type :=
ax : forall u t,

u=>b->

t = nty ->

Pf b (state (u, t))
| ¢c1 : forall u0 ¢ ul nu t nt,
Pf b (state (u0 ++[c]l++ul, t)) —>
inc ¢ t nt ->
nu = u0++ul ->
Pf b (state (nu, nt))
| dw : forall ¢ t,
Pf b (state ([1, t)) —->
(forall d : cand, (t d <=t ¢c)) ->
Pf b (winner c)

(*x start counting **)

(* all ballots are uncounted *)

(* and the tally is nill *)

(* start counting with null tally *)

(** count one vote *%*)

(* have an uncounted vote for c *)

(* tally increments c’s votes by one *)
(* vote deleted from uncounted votes *)
(* continue with new tally *)

(*x declare winner x*x*)

(* if all votes have been counted *)

(* and all cands have fewer votes than c *)
(* then c may be declared the winner *).

Table 1: Formal Specification of Plurality Voting

* (list cand) (* elected cands *)
-> Node
| winners:

list cand -> Node.

(xx final state *x*)
(x election winners *)

which is again a direct transcription from the mathemat-
ical representation in the previous section. As for FPTP,
we formalise the notion of j being a correct state of STV
counting by means of a dependent inductive type, where ev-
ery counting rule becomes a constructor. Figure 2 presents
the constructors that correspond to the transfer of a vote to
the next preference, and the election of a single candidate
(we have elided all other rules).

In the formulation of the transfer rule (tv, for transfer
vote), rep (f::fs) fs u nuisaformula that expresses that
the ballot f::fs, i.e. a first-preference vote for £ with re-
maining preferenes fs is replaced by the vote just containing
fs, so effectively crossing the first preference £ off the ballot
paper. In the formulation of the elect rule (el), eqe x 11
12 (for equal except) is a predicate that asserts that lists 11
and 12 are equal, except that 11 does not contain x but 12
does. That is, eqe ¢ nh h asserts that c is a an element
of the list h of continuing (hopeful) candidates that is no
longer present in the update list of (new hopeful) contin-
uing candidates nh. The full, formal specification of STV
can be obtained from the Coq sources that accompany this
paper. As for FPTP, the main point to notice is that the
mechanism of inductive types in Coq allows us to represent
the rule-based formulation of single transferable vote in a
very direct, straight forward way.

4. THE MONOTONICITY CRITERION

The monotonicity criterion [13], usually formulated for
preferential voting systems, simplifies greatly when applied
to first-past-the-post elections and states that “If a candi-
date ¢ wins an election given a set b of ballots, and if the
set b’ of ballots is obtained from b by changing some of the
votes to votes for ¢, then ¢ will (still) win when counting the
ballots b'”.

It is known that monotonicity holds for FPTP elections,
by a mathematically trivial argument. However, a certain
level of care must be exercised in a precise mathematical
formulation. In case of a tie between candidate ¢ and d
resolved in favour of ¢, changing zero votes to votes for ¢, the

tie may be resolved in favour of d. We therefore formulate
monotonicity more precisely as follows: If there is a way
of counting ballots b that produces c¢ as winner, and if b
are obtained from by changing some (zero or more) votes to
votes for ¢, then ballots b’ can be counted in such a way that
c wins.

Our formulation for monotonicity of FPTP vote counting
is based on a notion of evidence for the fact that the set v’
of ballots arise from b by changing some of the votes into
votes for (the winning candidate) ¢. This notion of evidence
is readily formulated as an inductive predicate better.(b,b")
that captures that the set b’ of ballots is “better” than the
set b of ballots from the perspective of candidate ¢, as some
of the ballots have been changed into votes for ¢. This pred-
icate is formulated inductively by means of the rules

betterc(xs, ys)
better(z::xs, y::ys)

bettero ([, (w=core=y)

where [] is the empty list of ballots and z::zs is a list (of
ballots) with head x and tail zs. The first rule deals with
the empty set of ballots, and says that changing (zero or
more) votes in the empty ballot results in a set of ballots
(necessarily empty) that is at least as good for winning the
election from c’s prespective. The second rule assumes that
the set of ballots zs is at least as good as ys from c¢’s per-
spective, and also that the ballot x is either the same as v,
or has been changed to c¢. Under these conditions, we have
that the list of ballots consisting of x and xzs is at least as
good as the ballots comprising y and ys. Again, this idea is
readily transcribed into an inductive definition in Coq:

Inductive btr (c: cand):

list cand -> list cand -> Type :=
| both_emp: btr ¢ nil nil
| both_cons: forall x xs y ys,

btr ¢ xs ys >

y=x\/y=c—>

btr ¢ (x::xs) (y::ys).

Our main theorem, formalised in Coq, then states that if
c can win a count that is conducted according to the FPTP
rules given ballots b, and b’ is a set of ballots that arises by
changing some votes to votes for ¢, then ¢ can still win the



[...1]
| tv : forall unu a t h e f fs,
Pf b q s (state (u, a, t, h, e)) —>
“(In £f h) —>
rep (f::fs) fs u nu ->

Pf b q s (state (nu, a, t, h, e))

[ ...1]
| el : forall u a t h nh e ne c,

Pf b q s (state (u, a, t, h, e)) —>
Inch —>

t(c) = q —>

length e < s >

eqe ¢ nh h >
eqe ¢ e ne —>
elected cands *)
Pf b q s (state (u, a, t, nh, ne))
[...]
| ew : forall wuathe,
Pf b q s (state (u, a, t, h, e)) —>
length e = s >
w=e —>
Pf b q s (winners w).

Inductive Pf (b: list ballot) (q: nat) (s: nat)

: Node -> Type :=

(*x transfer vote *x*)

(x
(*
(*
(*
(*

(*x elect a candidate **)

(*
(*
(*
(*
(*
(*

(*

(xx elected win *x)

(*
(*
(*
(*

Table 2: Part of the formal Specification of STV

if we are counting votes *)

and f no longer in the running *)

and the uncounted votes are updated *)
by deleting first pref f from a vote *)
continue with updated set of votes *)

if we are counting votes *)

and c is a hopeful *)

and c has enough votes *)

and there are still unfilled seats *)
and c is no longer continuing *)

and added to the

then proceed with updated data *)

if at any time *)

we have as many elected candidates as seats *)
and winners are precisely the elected *)

they are declared winners *)

count. In Coq, it takes the following form, where Pf refers
to the specification of plurality voting in Table 1:

Theorem mon_T: forall w b nb, btr w b nb ->
Pf b (winner w) -> Pf nb (winner w).

The functional reading of the theorem is that under the
condition that some ballots in nb have been changed to votes
for ¢, we can construct an FPTP-proof that w is the election
winner given ballots nb from an FPTP-proof that w is the
election winner given ballots b. In other words, from evi-
dence that w is the winner given ballots b, we can construct
evidence that w is the winner given ballots nb provided that
nb is better from the perspective of w.

The formal proof proceeds by induction on the sequence of
rule applications that lead to the judgement Pf b (winner
w) and maintains an invariant throughout the count. In
words, whenever we can reach a state of the count, starting
from ballots b with u votes uncounted and tally ¢, we can
reach a state of the count starting from ballots nb with nu
ballots uncounted, tally nt such that nu is “better” for ¢ and
the (new) tally nt of a candidate other than c is at most as
high as the tally ¢ for the (same) candidate.

In Coq, this is represented by the following lemma, where
A * B is the cartesian product of types A and B that we use
in place of logical conjunction (for technical reasons as this
allows us to extract a function that converts evidence):

Lemma mon_st: forall ¢ b nb u t,
btr ¢ b nb >
Pf b (state (u, t)) ->
existsT nu nt,

(btr c u nu) *
Pf nb (state (nu, nt)) *
(t ¢ <= nt c) *
(forall d, d <> c ->nt d <=t d).

which is proved by induction on the given evidence Pf b
(state u t) using the information that nb is a “better” set
of ballots from the perspective of candidate c. We refer to
the Coq sources for a full proof of this lemma, and the main
theorem.

S. THE MAJORITY CRITERION

Our second case study concerns a formal proof of the ma-
jority criterion [13]. Informally, the majority criterion for
single transferable vote states that if at least 50% of the
ballots contain a first preference for candidate ¢ then ¢ will
be among the winners of the election.

In our — intentionally loose — formulation of single trans-
ferable vote, we need to analyse the formulation more care-
fully, as it doesn’t make any assumptions about the quota
or the number of seats. It is evident that we need to re-
quire that the overall number of seats is strictly positive, as
otherwise only the empty set of candidates can possibly be
elected. Second, we need to balance the quota against the
total number of ballots. For a simple example, consider a
quota of 1 with one seat to be filled. Thus, the first candidate
d for whom a first preference vote is counted, will be elected
— even if all other first preference votes go to ¢ and d # c.
This is a consequence of our intentionally loose formulation
of STV that is not intended to specify a single implemen-
tation, but instead to subsume as many implementations as
possible. We therefore impose the relation

1
-q>=|b 1
s> 5 1)
where |b| is the number of ballots cast, s is the number
of seats and ¢ is the quota. In particular, this restriction
is satisfied by the Droop quota ([-] indicates the smallest



integer greater than its argument),

0] 1

s+1

q=1

the most widely used quota in STV elections, and the (smaller)

Hare quota.

Our main theorem relies on an auxiliary function that —
given a list b of preference-ordered ballots and a candidate
¢, computes the number cfp(b, ¢) of first-preference votes for
c (read as “count first preferences”). Formulated in Coq, our
main theorem takes the following form

Theorem maj: forall b q s w c,
s > 1 ->
2 ¥ s *x q > length b >
2 * count_fp ¢ b > (length b) —->
Pf b q s (winners w) ->
In c w.

and should be read as “if there’s at least one seat to be
filled, the number of ballots is at most twice the product of
seats and quota and c receives more than half first-preference
votes, then any set w of election winners contains ¢”. As for
FPTP, we interpret Pf b q s (winners w) as evidence that
w are the winners of an election with quota ¢, ballots b and
s seats to fill.

As for FPTP, we establish the theorem using an invariant,
i.e. a property that holds at all stages of the count, and is
strong enough to imply the result that we are about to prove.
Here, the invariant involves the current tally, the total num-
ber of first preferences amongst the (still) uncounted ballots,
and the overall number of votes received by the elected and
continuing candidates.

More formally our invariant states that at all stages of the
count, either c is already an elected candidate, or all of the
following are true:

e c is a continuing candidate (¢ € h)

e the tally of ¢, together with first preference votes for
¢ in the uncounted ballots is larger than half of the
number of total ballots cast:

2 - (t(c) + cfp(c,u)) > |b| (2)

e the sum of the tallies of all continuing and elected can-
didates, together with the number of uncounted bal-
lots, is below the number of total ballots:

ctl(t, h++e)) + |u| < |b] (3)

Here ctl(t,1) = > ., t(c) is the sum of the tallies of candi-
dates in list [, and ++ is the concatenation of lists as before.

The invariant above guarantees the following: if the can-
didate ¢ who got 50% of first preference votes isn’t elected
yet, then at least ¢’s tally, together with yet uncounted first
preference votes for ¢ is still larger than 50% of the number
of ballots. The second inequality essentially stipulates that
we’re still in the first round of counting and no votes have
been re-distributed yet: re-distributed votes would increase
the sum of the tallies beyond the number of votes already
counted.

We show, by means of a formal proof in Coq, that this in-
variant is maintained at all stages of vote counting according
to our formalisation of STV. For the rule of transferring a

single vote that we have discussed earlier, this can be seen as
follows. If the invariant holds immediately before this rule
is applied, then either

e c is already elected. In this case, ¢ will also be an
elected candidate after the rule has been applied and
the invariant is valid in the post-state, or

e cis not (yet) elected, but a continuing candidate, and
the two inequalities above hold for the state immedi-
ately prior to applying the transfer rule. As the rule
transfers a preference only in case the candidate in
question is not continuing, we know that this does not
amount to transferring a first preference for ¢ to the
next candidate. As a consequence, both inequalities
remain valid.

The situation for the rule that elects a candidate is slightly
different, but not more complicated. Again, if the invariant
holds immediately prior to applying this rule, then

e candidate c is already elected, and will also be an ele-
ment of the list of elected candidates after the rule has
been applied, and the invariant holds in the post-state,
or

e candidate c is the new candidate that is elected by
applying this rule. In particular, ¢ will be an element
of the set of elected candidates in the post-state, and
thus the invariant is re-established, or finally

e the rule elects an candidate d distinct from c¢. Then ¢
is still a continuing candidate (as the invariant holds
prior to rule application) and the two numerical in-
equalities still hold as the data does not change (for
the second inequality, note that the union of elected
and hopeful candidates remains the same).

In this way, the invariant propagates to the last state be-
fore the list of winners is declared. At this point, we know
that either c is among the elected candidates (and will hence
be one of the winners) or the second alternative of the invari-
ant obtains, which is in contradiction with the side condition
of declaring winners as rule applied next so that necessarily,
c is one of the elected candidates. We make this explicit for
the case where winners are declared using the third rule dis-
cussed in Section 2.2, i.e. the number of candidates marked
elected equals the number of seats, and the set of elected
candidates are declared to be the winners. As the invari-
ant propagates to the last valid state before this rule was
applied, we know that we are in one of two cases:

e c is an elected candidate. But this immediately gives
that ¢ is an element of the set of winners.

e c is a continuing candidate and Equations (2) and (3)
hold. But this is impossible due to the restriction on
quota (Equation 1), as we would obtain the following
contradiction:

|b] > ctl(t, h++e) + |ul 3)
=ctl(t,h) +q- s+ |ul (quota)
> t(c) +q- s +cfp(c,u) (cfp)
> [bl/24bl/2=1b 1), (2)

so that necessarily the first case applies, and c is an
element of the set of winners.



In the above, (quota) is the (easily verified) assertion that
all candidates marked as elected have received precisely g
votes, and (cfp) says that the number of first preferences for
¢ in the uncounted votes is at most as large as the number
|u| of uncounted votes.

6. DISCUSSION

There is a great number of criteria against which vote
counting schemes are (mathematically) evaluated. They in-
clude monotonicity and majority discussed here, but also In-
dependence of Irrelevant Alternatives [1], Consistency, Later-

No-Harm, Condorcet, Condorcet-Loser, Independence of Clones,

Reversal Symmetry etc. The fact that a concretely given
voting system satisfies a given property is usually established
using pen-and-paper proofs, see for example Hill et. al. [12].
In contrast, the work presented in this paper comprises the
first formal proof (in the sense of [10]) of two properties of
voting systems (monotonicity and majority) against a for-
mal specification of the respective system.

From the perspective of formal proofs, or interactive the-
orem proving, our results are certainly not surprising, and
from a purely mathematical perspective, they are not new.
Rather, our contribution lies in the fact that (a) we demon-
strate that the method of vote counting as proof, outlined
in [15] presents not only a convenient way of specifying vot-
ing protocols, but also allows to verify properties of speci-
fications in this style, (b) that specifications provide an ab-
straction layer that guarantee that every implementation of
the specification will automatically satisfy all properties that
have been established on the specification level, and (c) that
proofs at specification level provide additional validation of
the specification itself. We comment on all three aspects in
turn.

Formal Verification of Voting System Properties. Es-
tablishing properties of voting systems is essentially a math-
ematical task, and proving properties of voting systems in
a theorem prover takes these mathematical proofs to an en-
tirely new level of rigour: our proofs are machine-checked by
an interactive proof assistant (Coq) the kernel of which con-
sists of just a few hundred lines of trusted, well tested code
that has been used on a very large number of (formal) proofs.
As such, formal proofs greatly increase our confidence in the
correctness of the result, in particular if applied to complex
voting systems like the many variations of STV that often
differ only in minute detail.

While the main technical contribution of this paper are
formal proofs of properties of FPTP and STV voting schemes,
our conceptual contribution is to demonstrate that the for-
malisation of voting schemes as rules provides us with a
powerful proof method that allows us to formally establish
properties of voting protocols. We have demonstrated this
using two examples, and in both cases, were able to isolate
invariants, i.e. properties that hold at all stages of the count,
and are strong enough to imply the property under scrutiny.

Formal Specification as Intermediate Layer. We are
presented with two choices to verify properties of voting
schemes:

1. we start with a concrete algorithmic representation of
the voting scheme and then establish the given prop-
erty for this representation

2. we start with a declarative description of the voting

scheme and show that every way of counting consistent
with this description satisfies the given property

While the first approach only gives us guarantees for one

particular implementation of vote counting, the second ap-
proach that we follow in this paper will give guarantees for
all implementations that are consistent with the (rule-based)
description of the protocol. In particular, this includes the
vote-counting algorithms synthesised from the specification
[15]. The aspects of covering all realisations of the specifica-
tion stands or falls with the level of prescriptiveness of the
specification: the looser the specification, the more imple-
mentations will be covered. This is indeed the motivation
behind the specification of FPTP and STV analysed in this
paper.
Validation of Specifications. As with software develop-
ment in general, specifications are rarely error-free. Usually,
bugs in specifications are discovered when the verification
of a program against an erroneous specification fails. For
vote counting protocols, the situation is slightly more spe-
cific, as the formal specification prescribes the behaviour
of the (vote counting) program at a very great level of de-
tail. In the two specifications considered in this paper, every
rule can be directly translated to program statements, and
a counting program that conforms with a formal specifica-
tion that is given at this level of detail is usually developed
with the specification and the correctness proof in mind, in
other words, will be written to be specification-conformant
in the first place. This significantly reduces the opportunity
to detect errors in the specification itself: these will only be
discovered if the specification itself does not provably en-
tail a criterion that it is expected to satisfy. Our approach
does describe one method to achieve this, although clearly a
larger number of criteria should be validated to bolster our
belief in the correctness of specifications even more.

Conclusion and Future Work. We have presented two
case studies that substantiate that a specification of voting
protocols in terms of rules not only gives rise to provably
correct, universally verifiable vote counting [15] but is also
well-suited for a formal mathematical analysis in a theorem
prover. Our leading motive is that a state of a voting scheme
represents a snapshot of the room in which votes are counted
and represents all the important information pertaining to
the count. A rule then represents an action that changes
this state in accordance with the voting scheme. Rule-based
specifications of voting schemes can be loose in the sense
that no strict order of rule applications is required, and/or
ties can be resolved in more than one way. It remains to be
seen whether our approach scales up to (even) more com-
plex voting systems and voting systems not based on single
transferable vote, and to what extent proofs of properties of
voting systems can be made modular so that small changes
in the scheme do not require to re-do proofs of their prop-
erties in their entirety.

7. REFERENCES

[1] K. J. Arrow. A difficulty in the concept of social
welfare. Journal of Political Economy, 58(4):328-346,
1950.

[2] B. Beckert, T. Bérmer, R. Goré, M. Kirsten, and
T. Meumann. Reasoning about vote counting schemes
using light-weight and heavy-weight methods. 2014.



3]

Y. Bertot, P. Castéran, G. Huet, and

C. Paulin-Mohring. Interactive theorem proving and
program development : Coq’Art : the calculus of
inductive constructions. Texts in theoretical computer
science. Springer, 2004.

D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. IEEE Security & Privacy, 2(1):38-47, 2004.
D. Chaum, A. Essex, R. Carback, J. Clark,

S. Popoveniuc, A. T. Sherman, and P. L. Vora.
Scantegrity: End-to-end voter-verifiable optical-scan
voting. IEEE Security € Privacy, 6(3):40-46, 2008.
D. Cochran. Formal Specification and Analysis of
Danish and Irish Ballot Counting Algorithms. PhD
thesis, 2012.

J. E. Dawson, R. Goré, and T. Meumann.
Machine-checked reasoning about complex voting
schemes using higher-order logic. In R. Haenni, R. E.
Koenig, and D. Wikstrom, editors, Proc. E-Vote-1D
2015, volume 9269 of Lecture Notes in Computer
Science, pages 142—-158. Springer, 2015.

H. DeYoung and C. Schiirmann. Linear logical voting
protocols. In A. Kiayias and H. Lipmaa, editors, Proc.
VotelID 2011, volume 7187 of Lecture Notes in
Computer Science, pages 53-70. Springer, 2012.

R. Goré and T. Meumann. Proving the monotonicity
criterion for a plurality vote-counting program as a
step towards verified vote-counting. In R. Krimmer
and M. Volkamer, editors, Proc. EVOTE 201/, pages
1-7. IEEE, 2014.

T. Hales. Formal proof. Notices of the AMS,
55:1370-1380, 2008.

Helios. The helios voting system, 2016.
http://heliosvoting.org/, accessed June 25, 2016.

I. D. Hill, B. A. Wichmann, and D. R. Hill:1987:AST.
Algorithm 123 : Single transferable vote by meekaAZs
method. Computer Journal, 30:2777&&5281, 1987.

D. R. Hill:1987:AST. Properties of preferential
election rules. Voting matters, 3:8-15, 1994.

D. W. Jones and B. Simons. Broken Ballots: Will
Your Vote Count? CSLI Publications, 2012.

D. Pattinson and C. Schiirmann. Vote counting as
mathematical proof. In B. Pfahringer and J. Renz,
editors, Proc. AI 2015, volume 9457 of Lecture Notes
in Computer Science, pages 464—475. Springer, 2015.
Pret-A-Voter. The prét a voter system, 2016. accessed
May 25, 2016.

C. Schiirmann. The twelf proof assistant. In

S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel,
editors, Proc. TPHOL 2009, volume 5674 of Lecture
Notes in Computer Science, pages 79-83. Springer,
2009.



