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Abstract

Electronic vote counting is replacing manual counting, requiring formal verifica-

tion to take the place of traditional scrutineering for trust in the outcome of an

election. Pattinson and Schürmann [15] approach this problem by interpreting a

vote counting protocol as a set of rules with the same status as rules in math-

ematical proof theory: a vote count corresponds to applications of these rules,

and so a sequence of rule applications constitutes a proof of the outcome of a

count. This is formalised in a theorem prover, allowing the extraction of a prov-

ably correct vote counting program and providing an independently verifiable

certificate. To advance this approach, I prove that the formalisation of a simple

Single Transferable Vote protocol in [15] satisfies the majority criterion; this acts

as a verification measure in the translation from vote counting protocol to formal

specification and shows how the approach can be used for the formal comparison

of different vote counting protocols according to their properties. I then develop

a generic, modular approach to formalising vote counting protocols as natural

deduction systems and show how this can be instantiated with both simple and

real-world vote counting protocols. All of the work is formalised in Coq.
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Notation and terminology

The notation used is primarily standard notation from mathematical logic and is

explained where necessary. List notation is used that is mostly standard except

for some abuse of set notation, and so is given here.

Notation

List(X) the set of lists with elements in X.

[a0, a1, . . . , an] the list with elements a0, a1, . . . , an.

f : fs the list with first element f and remainder the list fs.

|l| the length of list l.

l #m the concatenation of two lists l and m.

c ∈ l c occurs in the list l.⋃
l the set of elements of the list l.

Terminology

first-order logic an extension of propositional logic to the universal

quantifier ∀ and the existential quantifier ∃.

formal language a set of strings of symbols, often described by syntac-

tical rules.

formula a string of symbols that is part of a formal language.

judgement an assertion in a formal system.

xi



xii NOTATION AND TERMINOLOGY

preferential voting a voting system in which voters rank candidates in or-

der of preference, rather than voting for a single can-

didate.

propositional logic logic concerned with propositions formed from atomic

propositions and logical connectives.

vote counting protocol a procedure for counting votes in an election, which

may be expressed in an informal or a formal language.



Introduction

The aim of this thesis is to build on work by Pattinson in [15], which established

an approach to electronic vote counting called ‘vote counting as mathematical

proof’. This relies on the observation that vote counting rules may be given the

same status as deduction rules in proof theory. Such a rules-based formalisation

may be implemented inside the interactive theorem prover Coq, allowing the ex-

traction of a provably correct vote counting program. Along with the outcome of

the count, this program produces a proof of the result in the form of a sequence

of rule applications, which may then be independently verified for correctness.

In this thesis, I prove that the formalisation of a single transferable vote (STV)

counting protocol in [15] satisfies the majority criterion, a mathematical property

used to compare voting systems. I address the problem of abstracting the prop-

erties common to all vote counting protocols under the proof rules approach by

building a generic framework. I prove that in this framework, there are properties

local to the list of rules that if satisfied, ensure a provable outcome of the count.

This makes it easier to implement different vote counting protocols under the

mathematical proof approach, which I demonstrate by applying the framework

to the first past the past (FPTP) and STV protocols in [15], as well as a more

complex real-world protocol.

Chapter 1 provides the context to the problem of trust in electronic vote

counting and describes the status of electronic vote counting in Australia. It

introduces the approach taken in this thesis by illustrating the analogy to proof

theory by formalising FPTP as deduction rules. Finally, it compares vote count-

ing as mathematical proof to related work. Chapter 2 presents the theory of

types that underpins the approach. This focuses on replacing truth conditions in

natural deduction by proof conditions to get a constructive logic, which we then

compare to type theory by the Curry-Howard isomorphism.

1



2 NOTATION AND TERMINOLOGY

Chapter 3 describes the specification and Coq implementation of STV as proof

rules, before proving that it satisfies the majority criterion. Finally, Chapter 4

develops the generic framework, called ‘generic termination’. It includes the im-

plementation of FPTP and STV inside this framework, as well as the specification

and implementation of the ANU Union vote counting protocol. Appendix A gives

the relevant part of the ANU Union constitution specifying the vote counting pro-

cedure that is formalised in Chapter 4.

Accompanying this thesis is Coq code of the implementations. Throughout the

thesis, the definitions made and theorems proved in the code are explained, both

mathematically and with snippets of code. While the nature of an interactive

theorem prover means that provided the theorems have been given correctly, the

proofs are correct, it is recommended to open the code and step through some

of it to gain a sense of the formal proof environment. Instructions on how to do

this, as well as the code, are included on an accompanying USB drive. They may

also be downloaded at https://github.com/floverity/coq-vote-counting.

https://github.com/floverity/coq-vote-counting


Chapter 1

Context

This section motivates the shift from traditional elections to electronic alterna-

tives and discusses how trust can be established in the outcome of an electronic

election. It includes an introduction to the approach adopted in this thesis of

‘vote counting as mathematical proof’. Finally, it provides a brief comparison to

related work.

1.1 Electronic vote counting

Belief in the legitimacy of an election outcome requires trust that the votes have

been counted correctly, that is, according to the legislated vote counting protocol.

In the case of traditional, paper-based elections, this trust is founded in the role

of election scrutineers who observe the vote count as it is conducted. This is not

a mechanism for picking up the small errors to which complex manual tasks are

prone; rather, it is a widely-accepted means of keeping the process transparent,

ridding the need for blind faith in the count being run according to protocol.

Paper-based elections are progressively being replaced by electronic alterna-

tives at every stage, from vote-casting to vote counting. The traditional process –

printing and transporting the ballots to polling stations, conducting the polling,

collecting the ballots and transporting them to a central location to perform the

manual count – is labour-intensive, expensive and time-consuming. As it stands,

the vote count for the Australian Senate remains unfinished until several weeks

after the election is held.[2] Furthermore, traditional elections deny the privacy

of voters who require assistance to complete a paper ballot, such as someone

with a vision impairment. Electronic alternatives can provide this assistance

anonymously. Electronic elections also have the potential to increase trust in the

3



4 CHAPTER 1. CONTEXT

voting process, for example, by keeping a record of the votes cast. The potential

for paper ballots to go missing was evidenced in the 2013 Western Australian

Senate election, in which 1139 votes were misplaced and an expensive recount

was required.[1]

Electronic elections can also accommodate more complex vote counting pro-

tocols. The design of a voting system takes into account the ease with which

ballots may be counted manually, rather than just considered the fairest way to

conduct the tally.[11] In the case of preferential voting, this usually means that

simplifications in the process of transferring ballots from one candidate to another

are made. Should a tie between candidates occur, it is necessary to trace the pre-

vious rounds of transfers to break the tie. When done by hand, this process is

an approximation that can lead to unfairness. Electronic elections allow for more

complex yet fairer voting systems to be used in real world.

1.1.1 Formal verification

To realise these benefits, electronic elections need to be conducted in a trustwor-

thy manner. The traditional scrutiny measures, such as allowing members of the

public to observe the count, must be replaced by alternatives that perform the

same role for voting software. The need for new scrutiny measures applies to

both vote-casting and vote counting technologies; this thesis is concerned only

with the latter.

This is not the first time assurance that a program performs a desired task

correctly has been required. The field of formal verification in computer science

is concerned with techniques for proving the correctness of a program. Here,

‘correct’ is only understood with respect to a formal specification that details

the required properties of a program, and is formal as it is given in a language

defined by mathematical logic (or mathematical logic itself).

Figure 1.1 illustrates the process from a legal document specifying a vote

counting procedure to the actual vote count being conducted. Each arrow repre-

sents a step away from the original text, with the left-hand side corresponding to a

traditional, manual count and the right-hand side corresponding to an electronic

count.

To have trust in the outcome of the count, each arrow should be justified

with a process verifying that the original legal text is still correctly captured. In

the case of a manual count, the legal text is distilled into a practical, manual

procedure for the vote counter to follow, referred to as the manual specification.
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Figure 1.1: Verification steps for a traditional election and an electronic election.

Verification of this step lies in trusting the electoral officials who are familiar with

both texts. The manual implementation then refers to the actual counting of the

votes, where trust comes from the aforementioned role of election scrutineer.

In the case of an electronic vote count, translation into a formal specification

is verified by convincing oneself it expresses the same process as the original

text, as in the case of a manual count. Trust comes with many people being

confident that they are one and the same, and so relies on using a language that

is well-known or high-level, that is, close to natural language. The specification

can also be validated by proving certain theorems or ‘sanity checks’ that are

intended to be true of the specification. A method of formal verification is then

used for trust in the implementation, that is, the actual piece of vote counting

software. So while ‘formal verification’ has ther technical meaning of proving the

correctness of a program with respect to a formal specification, in the case of vote

counting, we are interested in a two-stage verification process of specification and

implementation. Proving the correctness of a program does not verify that the

formal specification correctly describes the problem.

A side-issue to updating the traditional scrutiny measures to the electronic

case is communicating how these measures work to convince the public that they

are adequate. This requires explaining how formal verification works and why it

should be trusted to replace traditional scrutiny. It is also advantageous that the

method of formal verification requires as few technical skills as possible, so that

the pool of potential electronic scrutineers is as wide as possible.

It is also worth noting that there are alternative scrutiny measures to formal

verification, however these are generally inferior as they don’t rely on mathemat-
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ical proof. One option is to publish the votes so that voters may rerun the count

with their own software. However, this is open to a particular coercion tactic,

sometimes called the “Italian attack”, whereby a voter is instructed to vote in a

particular way and the coercer may then search to see whether this vote has been

recorded. In a preferential voting system, the permutations of possible ballots can

be large, meaning there is no guarantee that the particular vote will be otherwise

cast.

1.1.2 Electronic vote counting in Australia

Electronic vote counting programs are used in Australia. Australian elections

are conducted according to versions of single transferable vote (STV) counting.

In this system, voters rank the candidates on the ballot in order of preference.

The count proceeds by electing candidates who have reached a quota of votes

required to be elected, and eliminating candidates when seats still remain and no

candidate can be elected. When a candidate is eliminated, the ballots counting

towards them are then ‘transferred’ to the next candidate given preference on the

ballot.

The vote counting programs used in Australia have not been formally veri-

fied. In Victoria and the ACT, digitised ballots are counted using open-source

programs, meaning everyone has access to scrutinise the code, however it has

not been proved mathematically that the code correctly adheres to the legislated

protocol. This is problematic because programming errors are commonly made

and difficult to detect. This was evidenced by the three bugs found in the count-

ing module of the ACT’s Electronic Voting and Counting System (EVACS) by

the ANU Logic and Computation Group. Had these bugs manifested in the five

elections using EVACS, they could have changed the election outcome.[13, p.7]

The electoral body of NSW and the Australian Electoral Commission both use

unverified, closed-source code.[12, p.9]

1.2 Vote counting as mathematical proof

The approach adopted in this thesis, variously referred to as “vote counting as

mathematical proof” and “vote counting rules as proof rules”, comes from [15]

and is based on the observation that vote counting procedures are comprised of

rules analogous to proof rules in mathematical logic. Treating vote counting rules

as proof rules then enables the appropriation of concepts from proof theory to
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build an approach to electronic vote counting that is naturally mathematical, and

thus only a small step away from formal verification.

This inherent mathematical content comes from proof theory, a branch of

mathematical logic concerned with proofs as formal mathematical objects, as

opposed to the more informal notion of what constitutes a proof in standard

mathematical practice. In particular, we illustrate the analogy using rules from

natural deduction, one of the two main systems of proof in contemporary struc-

tural proof theory, alongside the sequent calculus. A familiarity with the system

of natural deduction is assumed for what follows, however the relevant features

are explained and the reader is referred to [16] for more details.

Natural deduction is an example of a class of formal systems called deductive

systems. A deductive system consists of judgements and rules. It specifies the

forms a valid judgement may take and provides a collection of rules consisting of

axioms and inference rules, where a rule is given by zero or more premises and

a conclusion. In comparison to an algebraic theory such as group theory, we can

think of the judgements as the elements of a group and the rules as the group

action.

1.2.1 Vote counting rules as proof rules

We delineate three important similarities between proof rules from natural deduc-

tion and vote counting rules. To illustrate these similarities, we use the simplest

system of vote counting called ‘first past the post’ (FPTP). In FPTP, a vote is

for a single candidate and the candidate who receives the most votes wins. In

what follows, we use the formalisation of FPTP rules from [15].

Form

The following is an example of a rule from natural deduction, namely the intro-

duction of a disjunction:

Γ ` A
(∨I)

Γ ` A ∨B

In this rule, (∨I) is the name of the rule, A and B are formulae, Γ is a set of

formulae called the assumptions, and Γ ` A and Γ ` A ∨ B are judgements.

For now, a judgement Γ ` X is read as ‘Γ entails X’. This is not the only

interpretation we can assign to the symbols; in the next section, we will see the

significance of considering different judgements. The judgement above the line
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is called a premise and the judgement below the line is called the conclusion.

This is a single-premise rule, we may also have multi-premise rules and rules

with no premises, however all of the vote counting rules defined in this thesis are

single-premise rules.

Vote counting rules can be written in the same form. To illustrate this, con-

sider the rule for counting a voting in FPTP:

“To count a single vote, pick an uncounted ballot, mark it as

counted and increase the tally for the candidate on the ballot by

one.”

To formalise this rule as a proof rule, let C be a set of candidates in the running

to be elected, and identify a vote for candidate c ∈ C with their name c. For

a set X, let List(X) be the set of all lists with elements in X. Then the list of

ballots cast can be represented by b ∈ List(C) and the list of uncounted ballots

can be represented by u ∈ List(C). Let t : C → N be the running tally, a function

that maps a candidate c to the number of votes that have been counted in their

favour. Then an intermediate stage of the vote count can be represented by a list

of uncounted votes and a tally, namely a pair (u, t). A judgement takes the form

b ` (u, t)

interpreted as “the intermediate state (u, t) is correct state of vote counting from

the assumption of the list of ballots cast b”. Then we may express the ‘count one’

rule as:

b ` (u1 #[c] #u2, t)
(C1)

b ` (u1 #u2, t[c 7→ t(c) + 1])

The judgement above the line is the premise, corresponding to an intermediate

stage of the vote count in which the uncounted votes contain a vote for c, and the

judgement below the line is the conclusion, corresponding to an intermediate stage

of the vote count in which the vote for c has been removed from the uncounted

votes, and the tally has been updated by increasing the value for c by one. The

rule of inference is labelled on the right the name C1, read ‘count one’.

Axioms

An axiom in proof theory is a judgement that can be introduced without any

formal justification, as it is accepted to be self-evident. It is a zero-premise rule.

An example of an axiom in natural deduction is:
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(Ax)
Γ ∪ A ` A

This says that we can deduce, from nothing, the judgement “a set of assumptions

containing A entails A”. The start of a FPTP count is given by the stipulation:

“To start the count, mark all ballots as being uncounted votes.”

This can be expressed as the following axiom:

(Ax)
b ` (b, nty)

where nty : C → N is the null tally, returning zero for every candidate. This

says that taking all the ballots cast as the uncounted votes and the null tally is

a correct state of vote counting.

Provability

There is a specific notion of provability in proof theory.

Definition 1.1. A judgement is provable if it can be obtained as the final judge-

ment in a finite sequence of judgements, where the sequence begins with an axiom

and each subsequent judgement is either an axiom or the result of a valid rule

application to a prior judgement.

We refer to the sequence of judgements and rule applications as a proof se-

quence. If multi-premise rules are involved, the proof-sequence is part of a branch-

ing proof tree, however since single premise rules are sufficient for all of the vote

counting rules in this thesis we will only be concerned with proof sequences. For

example, we have the follow proof sequence showing that Γ ∪ A ` A ∨ B is

provable:

(Ax)
Γ ∪ A ` A

(∨I)
Γ ∪ A ` A ∨B

Similarly, we can provide a proof sequence to show that a vote counting state is

provable:

(Ax)
b1 #[c] # b2 ` (b1 #[c] # b2, nty)

(C1)
b1 #[c] # b2 ` (b1 # b2, nty[c 7→ nty(c) + 1])

This says that if the ballots cast contains a vote for candidate c, we may start

counting with these ballots and the null tally, and then count the vote for c to

obtain a provable intermediate state of the count.

We can also use this notion of provability to define the outcome of a vote

count. Consider the final rule in a FPTP count:
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“If no uncounted votes remain, the candidate with the highest

tally will be declared the winner.”

If we introduce a new judgement of the form b ` winner(c), we can define a rule

that declares winners:

b ` state([], t)
(Dw)

b ` winner(c)
(∀d ∈ C.t(d) ≤ t(c))

The premise is an intermediate state of the count in which no uncounted votes

remain, and expresses as a side condition the property that the tally of every

candidate in the running is no greater than the tally of c. The conclusion is a

declaration of c as the winner. In this system, we may then define the outcome

of a vote count to be a provable declaration of a winner.

Given these parallels, we have modelled a simple vote counting protocol as a

deductive system.

1.2.2 Implementation

Giving vote counting rules the same status as proof rules acts as a formal speci-

fication for a vote counting protocol. Much more than that, we will see that the

mathematical nature of this formalisation has inherent computational content.

This allows us to move easily from the logical specification to implementing an

actual vote counting program.

The theory behind this far-reaching concept – type theory and the Curry-

Howard isomorphism – will be the focus of next chapter. It will allow us to

automatically generate a vote counting program that not only gives the outcome

of a count, but also constructs a proof sequence to show the provability of the

judgement declaring the outcome. Not only does this manner of generation en-

sure the program is provably correct with respect to the specification, the proof

sequence may be independently verified by checking that the rule applications

between judgements are valid. Just like a pen and paper proof is an entity in

its own right, independent of the process that went into writing it, the proof

sequence is entirely independent from the means of generation. This kind of in-

dependently verifiable evidence is called a certificate, and allows voters to verify

the count themselves, in addition to having formally verified software.
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1.3 Related work

Considering related work, we claim that this approach is an improvement in both

stages of verification illustrated in Figure 1.1. In a similar approach taken in

[9], a non-classical logic called linear logic is used for the specification. This is

based on the observation that just like ballots, assumptions in linear logic (unlike

classical logic) may only be used once. The specification is then automatically

translated into executable code, and the program generates a certificate in the

form of a linear logic proof which may be independently verified to ascertain the

correct of the count using a proof checker.

However, to verify that the natural language specification is captured by the

formalisation requires a considerable level of familiarity with linear logic. We

claim that the gap between the original text and the specification is smaller

under the proof rules approach, and written in a more familiar system of logic.

We also claim that while the approach in [9] relies on using a pre-existing

proof checker, in which trust of correctness must be placed, the proof sequence

generated in our approach is simple enough to check that the technical skills

required for the individual to write their own proof-checker in a main stream

programming language are not beyond a first year programming course.[15, p.3]

This also opens up a wide pool of potential electronic scrutineers.

In verifying the step from specification to implementation, other approaches

tend not to generate independent certificates, such as [3] and [8]. This means

voters must rely on the correctness of a whole chain of tools used in the code and

verification, without a secondary piece of evidence.
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Chapter 2

Type theory

In this section, we introduce the theory that allows us to implement vote counting

rules as proof rules. This begins with a discussion of the concept of a type, before

establishing its position at the intersection of mathematical logic and program-

ming by considering how we interpret classical logic. The basic features of type

theory are presented, as well as other features specific to the type theory used for

our implementation.

2.1 Types

The concept of a type originates with the interest in foundational mathematics

at the turn of the 20th century. In particular, it was part of a response to

Russell’s paradox, a contradiction that arises by considering the set of all sets

not containing themselves. To formalise this idea, let φ be the predicate holding

for a set X if X 6∈ X. If we allow for unrestricted set comprehension, that is, for

any predicate we can form the set of objects for which the predicate holds, then

we can form Russell’s set,

R = {X | φ(X)}.

Russell’s paradox arises by asking whether or not R is a member of itself. By

definition of φ, if R is not a member of itself then φ(R) holds, therefore R must

contain itself by definition conditionsof R. Conversely, by definition of R, if R is a

member of itself then φ(R) holds, therefore R must not contain itself by definition

of φ. As such, we have the paradox expressed symbolically as R ∈ R⇔ R 6∈ R.

One significance of this paradox is that it indicates an inconsistency in the set

13
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theory of the time. An inconsistency in set theory, where both P and ¬P may

be deduced, is said to undermine mathematics as the logical consequence is an

explosion – the deduction of any proposition Q.

The significance in this context is Russell’s response to the paradox. Identi-

fying that the paradox stemmed from a lack of restriction on the predicates that

could define a set, Russell defined a type structure. This placed ‘primary objects’

at the base, in ‘type 0’, and then arranged predicates in a hierarchy. A property

predicated of a primary object exists in ‘type 1’, a property predicated of a prop-

erty of a primary object exists in ‘type 2’, and so on. Under this stipulation, the

set R may not be defined and the paradox is blocked.

2.1.1 Types versus sets

This solution to Russell’s paradox does not suggest that sets must be replaced

by types for a consistent foundation, and of course a revised set theory with

restricted set comprehension serves well as a foundation for mathematics. How-

ever, developing the notion of a type leads to some very useful mathematics that,

due to its computational content, is well-suited to applications from the view-

point of logic. The specification of vote-counting rules will be a demonstration

of how using types can be more convenient, and fruitful, than using sets. Before

establishing the link to computation, we begin by building familiarity with the

primitive concept of types by comparison to sets, in order to gain an intuition of

types beyond a first impression as ‘strange sets’.

Mathematical objects are, in a sense, naturally ‘typed’. Although a pair is

defined by an implementation, for example as a Kuratowski pair,

(a, b) := {{a}, {a, b}},

it is standard practice outside of set theory to treat it more like a synthetic

object, without regard for its implementation. Another example of this practice

is a function f : A→ B, given formally as a functional relation – a subset of the

cartesian product A × B satisfying certain properties. It is more customary to

regard the definition of a function f : A → B as a typing judgement, saying the

object f has the type of a function with domain A and codomain B, where ‘type

of a function’ assigns to f the familiar operational behaviour of a function. In

type theory, this working intuition is captured formally. Pairs and functions are

given as types directly though rules that specify the primitive operations used to
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manipulate an object. In this sense, types are higher-level than sets and because

they are defined by rules, which by nature are procedural, this enables a close

connection to computation.

Type theories are deductive systems, as discussed in Chapter 1, and so built

by specifying judgements and rules. In contrast, set theory consists of two layers

– the deductive system of first-order logic and inside this system, a collection

of axioms of the theory, such as ZFC. This means mathematical objects and

propositions about objects are distinct in set theory, since the former are sets

and the latter are judgements in a deductive system. In type theory, there is a

single basic notion, meaning propositions are also types.

The basic judgement in type theory is of the form a : A, read as ‘a is a term

of type A’. Although in certain contexts this may be thought of as the judgement

‘a is a member of A’, it is not equivalent to the set-theoretic a ∈ A, which rather

than being a judgement is a proposition giving a relation between two objects.

As a proposition, a ∈ A may be true or false, while the judgement a : A cannot

be proved true or false – it is either a valid judgement in the system or not.

Furthermore, every object must have a type whereas in set theory, an object can

exist independently of a set.

The interpretation of the judgement a : A is important in understanding type

theory, and forms the focus of the next section. In particular, we will see how

changing the classical interpretation of judgements in propositional logic leads to

a system of logic isomorphic to a theory of computation.

2.2 Constructive logic

A formal language can be considered purely syntactic manipulation in the absence

of an interpretation – the assignment of meaning to symbols. In the case of

propositional logic, an interpretation is classically provided by assigning to each

atomic proposition a truth value, so that ‘A’ becomes the judgment ‘A is true’.

Connectives may then be understood in terms of the constituent propositions via

a truth table, as in Figure 2.1.

These are known as the Tarski semantics for propositional logic, and ask the

question that mathematical logic is traditionally concerned with – ‘when is A

true?’. However, this is not the only judgement that may be considered.



16 CHAPTER 2. TYPE THEORY

A B A ∧B A ∨B A⇒ B A⇔ B ¬A
T T T T T T F

F T F T T F T

T F F T F F

F F F F T T

Table 2.1: Truth table providing an interpretation for propositional logic.

2.2.1 BHK-interpretation

In the context of mathematics, there is another important judgement that comes

from asking the question ‘what is a proof ofA?’. The Brouwer-Heyting-Kolmogorov

(BHK) interpretation is concerned with the judgement ‘p is a proof of A’, and so

gives an account of propositional and first-order logic in terms of proof conditions,

rather than truth conditions. This interpretation leads to a subsystem of classical

logic, in the sense that certain classical principles are no longer valid, known as

constructive logic.

The BHK-interpretation first assumes an intrinsic understanding of a proof for

an atomic proposition, where proof means some kind of convincing mathematical

argument. Proof conditions may then be given for each connective in terms of

the constituent propositions. We now develop propositional constructive logic by

reinterpreting the judgements in the natural deduction rules for the main connec-

tives – conjunction ∧, disjunction ∨, implication ⇒ and the logical constant for

falsehood ⊥, read ‘absurdity’. Conditions for the remaining connectives, negation

¬ and the biconditional ⇔, are then supplied by the following definition.

Definition 2.1. Let ¬ and ⇔ be abbreviations given by

¬A := A⇒ ⊥
A⇔ B := (A⇒ B) ∧ (B ⇒ A)

Remark 2.2. The BHK-interpretation generally refers to the fragment of rules

below called introduction rules, saying what constitutes a proof involving a con-

nective. We provide the proof conditions interpretation of all the deduction rules,

using [19] and [10] for reference.
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Conjunction

To illustrate the shift to a proof conditions interpretation, we begin with the

truth conditions for the rules governing conjunction. Firstly, note that implicit

in the judgement ‘A is true’ is a second judgement, saying that the identifier A

is a proposition. This means we also require the more primitive judgement ‘A is

a proposition’. Thus the first rule is a formation rule, asserting an identifier to

be a proposition:

Γ ` A is a proposition Γ ` B is a proposition ∧F
Γ ` A ∧B is a proposition

This says that the conjunction of two propositions is also a proposition. As

in the deductive systems of Chapter 1, Γ is the context, a set of zero or more

assumed propositions, and ` is the entails relation, saying the righthand side

follows logically from the lefthand side.

The remainder of the rules concern the main judgement ‘A is true’. The

introduction rule says that if we have two propositions that are both true then

their conjunct, which is a proposition by the formation rule, is also true. Since

it is understood that truth judgements are only made about propositions, this is

given as:

Γ ` A is true Γ ` B is true ∧I
Γ ` A ∧B is true

Two elimination rules allow the deduction of each conjunct separately from the

conjunction:

Γ ` A ∧B is true ∧E1
Γ ` A is true

Γ ` A ∧B is true ∧E2
Γ ` B is true

Shifting now to a proof conditions interpretation for ∧, the formation rule

remains the same but we update the introduction rule:

Γ ` p is a proof of A Γ ` q is a proof of B ∧I
Γ ` (p, q) is a proof of A ∧B

This stipulates what a proof of A ∧B looks like, and it is what we would expect

– namely a pair consisting of a proof of A and a proof of B. Henceforth, we

abbreviate the judgement ‘p is a proof of A’ using the notation p : A. The

elimination rules become:
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Γ ` p : A ∧B ∧E1
Γ ` π1(p) : A

Γ ` p : A ∧B ∧E2
Γ ` π2(p) : B

where π1 is the first projection and π2 is the second projection. Again, this is

what we would expect. A proof of A is the first projection of a pair consisting

of a proof of A and a proof of B, in order, while a proof of B is the second

projection. Read together, the introduction rule says pairs of proofs are proofs of

the conjunction, and the elimination rule gives the closure, ruling out any other

kind of proof of a conjunction.

In changing the judgement, the rules include a new object – not just the propo-

sition A but the proof object p. As such, we have a new kind of rule governing

how a proof of a proposition can be simplified, accounting for the possibility of

different proofs of the same proposition. They are called computation rules, and

for conjunction they take the form:

π1(p, q) ; p

π2(p, q) ; q

The symbol ; is read as ‘reduces to’. This specifies the computational behaviour

of π1 and π2. The computation rule can also be seen as describing the interaction

between the proof term in the conclusion of the introduction rule and the proof

terms in the conclusions of elimination rules.

Implication

We continue by presenting the deduction rules for the remaining connectives

with this interpretation. The formation rule for implication says that from two

propositions A and B, we can form the proposition A⇒ B:

Γ ` A is a proposition Γ ` B is a proposition ⇒F
Γ ` A⇒ B is a proposition

The introduction rule says that if a proof x of A entails a proof p of B, then there

is a proof of A⇒ B. In other words, a proof of A⇒ B is a function mapping a

proof of A to a proof of B.

Γ, x : A ` p : B ⇒I
Γ ` λx.p : A⇒ B



2.2. CONSTRUCTIVE LOGIC 19

The function is given using λ-abstraction, a means defining a function anony-

mously. For example, λx.p expresses the function given by the more familiar

notation f(x) = p, except without ascribing it the name f . We can also specify

the type of x by writing (λx : A).p. The elimination rule stipulates going from a

proof of A ⇒ B and a proof of A, to a proof of B. Since a proof of A ⇒ B is a

function, this is just function application.

Γ ` q : A⇒ B Γ ` a : A ⇒E
Γ ` q(a) : B

Finally, the computation rule relates the proof term in conclusion of the intro-

duction rule to the proof term in the conclusion of the elimination rule. It says

that the application of a function (λx : A).p) to a reduces to p with a substituted

for every instance of x in p. The notation for this is p[a/x] and so the rule is

given:

((λx : A).p)a; p[a/x]

Absurdity

The absurdity, ⊥, behaves differently to the other connectives. There is the

obvious formation rule:

⊥F⊥ is a proposition

however there is no introduction rule. This reflects the meaning of absurdity – it

does not make sense to have a proof of the absurd proposition and so ⊥ is defined

by having no possible proof. The elimination rule is a closure condition saying

not only is there no way to get a proof of ⊥, but if there is a proof of ⊥ then the

system must crash and so anything can be proved. This is expressed by abortAp.

Γ ` p : ⊥ ⊥EΓ ` abortAp : A

There are no computation rules for ⊥.

Disjunction

Disjunction is left until last as it has the most significant change in interpretation.

The formation rule is as expected:

Γ ` A is a proposition Γ ` B is a proposition ∨F
Γ ` A ∨B is a proposition



20 CHAPTER 2. TYPE THEORY

The introduction rule says that a proof of A∨B is a pair (i, q) where either i = 0

and q is a proof of A, or i = 1 and q is a proof of B. In general, we may not

be able to determine which disjunct is being proved, so we require the proof to

carry that information. The rules are written:

Γ ` p : A ∨Il
Γ ` (0, p) : A ∨B

Γ ` q : B ∨Ir
Γ ` (1, p) : A ∨B

Where the proof conditions interpretation of the other connectives gave us some-

thing that behaved the same way as the truth interpretation, but carried more

information in the form of proof objects, disjunction is different. Consider the

structure of a proof by contradiction, used to show that there exists an object

x with certain properties given by P . The law of excluded middle, informally

called a ‘law’ but either given directly as a rule in classical propositional logic or

derived from a double negation elimination rule, says that either ∃x.P (x) is true

or ¬∃x.P (x) is true. Suppose that assuming ¬∃x.P (x) entails a contradiction,

Q ∧ ¬Q. From the law of non-contradiction, again only informally called a law

but either captured in a rule or deduced from other rules, ¬∃x.P (x) cannot be

true. Therefore ∃x.P (x) must be true.

Reading this in terms of proofs, if ¬∃x.P (x) entails a contradiction then there

is no proof of ¬∃x.P (x), however this does not provide a proof of ∃x.P (x). In

other words, the law of excluded middle is denied since a disjunction requires a

proof of one of the disjuncts, and the knowledge of which disjunct is being proved.

This is the sense in which a proof conditions interpretation gives a logic that is

constructive. It is not sufficient to show the non-existence of an object leads to

a contradiction; rather, to prove there exists an object x with certain properties

requires a finite procedure to construct the object.

Returning to the rules for ∨, the elimination rule says that if there is a proof

of a disjunction, and a proof of another proposition C is entailed by a proof of

each of the disjuncts, then this forms a proof of C:

Γ ` p : A ∨B Γ ` f : A⇒ C Γ ` g : A⇒ C ∨E
Γ ` cases p f g : C

The notation cases is just used to capture how the proof of C is built from the

proofs p, f and g, depending on which disjunct p proves. This becomes clear with

the computation rules specifying the evaluation of cases:

cases (0, p) f g ; f(p)

cases (1, p) f g ; g(p)
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The first rule says that if p is a proof of the first disjunct A, then a proof of C is

obtained by applying f , a function from A to C, to p. The second rule says that

if p is a proof of the second disjunct B, then a proof ofC is obtained by applying

g, a function from B to C, to p.

2.3 Curry-Howard isomorphism

Note that by simply changing the main judgement in our propositional calcu-

lus, we have described familiar mathematical objects as proofs of propositions,

for example pairs and functions. The history of type theory continued from

Bertrand Russell to Alonzo Church, who developed the concept of a type into a

formal system called the ‘Simply Typed λ-calculus’,[7] intended as a foundation

for mathematics. Such a foundation defined familiar mathematical objects, such

as pairs and functions, in terms of the rules governing their behaviour. Due to

this procedural nature, it also served as a model of computation.

Now suppose we change the judgement ‘A is a proposition’ to ‘A is a type’,

and the judgement ‘p is a proof of A’ to ‘p is a term of type A’. It turns out

that this is sufficient to give a type theory – a formal system based on types.

Changing the judgements in this way brings together two systems, constructive

logic and type theory, whose initial development was unrelated. This is known as

the Curry-Howard isomorphism, and says we can interpret propositions as types

and proofs as terms, also called ‘programs’. It is this correspondence between

logical operators and type-theoretic operators that allows us to directly translate

the mathematical formalisation of vote counting rules as proof rules into a type

theory, with minimal gap between the two.

Considering the rules in terms of types, the formation rules explain what

the types of the system are, and the introduction and elimination rules provide

rules for an expression to be well-typed. These are said to describe the static

part of the language.[19, p.78] The new rule introduced under the proof theoretic

interpretation, the computation rule, introduces a new dynamic component to

the language specifying how expressions may be reduced to simpler forms, or in

this sense, evaluated.

We now present the main rules of type theory according to Martin-Löf type

theory (1972) given in [14], using [18] as a reference. It was developed with the

Curry-Howard isomorphism in mind as a foundation for constructive mathemat-

ics, and forms the basis of the system we will use. While it would be sufficient to

Flo Verity
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simply change the judgements in the rules governing the connectives of proposi-

tional logic, for the sake of being convinced that the same system was developed

independently, we focus on how familiar mathematical objects might be given a

rule-based formalisation.

2.3.1 Function type

The most basic type is the function type, corresponding to implication under the

Curry-Howard isomorphism. Suppose we have primitive types A and B, and we

want to form the type of functions with domain A and codomain B. This is given

by the formation rule:

Γ ` A is a type Γ ` B is a type →F
Γ ` A→ B is a type

By this rule, a function is given as a primitive type, rather than being define

via an implementation as a functional relation. A function is constructed by λ-

abstraction according to the introduction rule, which in the context of types, is

also known as the constructor :

Γ, x : A ` p : B →I
Γ ` λx.p : A→ B

The elimination rule expresses the application of a function f : A→ B to a term

in the domain to get a term in the codomain, f(a):

Γ ` f : A→ B Γ ` a : A →E
Γ ` f(a) : B

The computation rule then specifies the action of the elimination rule on a con-

structor:

((λx : A).p)a; p[a/x]

This is just evaluation of a function by replaced every occurrence of x in p by a.

2.3.2 Product type

The product type corresponds to conjunction under Curry-Howard. Suppose A

and B are types, then we can form the type A×B, called the cartesian product.

The terms are intended to be ordered pairs, and once more, they are given as a

primitive concept rather than an implementation in sets.

The obvious way to construct pairs is to take an a : A and a b : B, and form

(a, b) : A×B. This is the familiar introduction rule:

Flo Verity

Flo Verity
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Γ ` a : A Γ ` b : B
Γ ` (a, b) : A×B

The elimination rule describes how pairs are used. Pairs are used by defining

functions out of them – a first projection and a second projection:

Γ ` p : A×B
Γ ` π1(p) : A

Γ ` p : A×B
Γ ` π2(p) : B

The computation rule then relate the constructor and eliminators, that is, speci-

fies the expected operation of π1 and π2:

π1(p, q) ; p

π2(p, q) ; q

2.3.3 Sum type

Given A, B types we can form the sum or coproduct type A + B. This corre-

sponds to disjoint union in set theory, and disjunction under the Curry-Howard

isomorphism. As expected, there area two ways to form a disjoint union:

Γ ` p : A

Γ ` inl(p) : A+B

Γ ` q : B

Γ ` inr(p) : A+B

We change (0, p) to inl and (1, p) to inr, for left injection and right injection re-

spectively. To eliminate a sum type, we construct a function out of it:

Γ ` p : A+B Γ ` f : A⇒ C Γ ` g : A⇒ C

Γ ` cases p f g : C

Then the computation rules describe the operational behaviour of cases by re-

lating it to left injection and right injection from the introduction rules:

cases inl(p) f g ; f(p)

cases inr(p) f g ; g(p)

2.4 Extending to first-order logic

So far we have only looked at the propositional fragment of logic. The proposi-

tions as types interpretation also extends to first-order logic. We begin from the

viewpoint of logic before considering their counterparts in type theory.
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2.4.1 Universal quantifier

Under the BHK-interpretation, a proof of (∀x : A).P is a function f , mapping

each a : A to a proof f(a) of P [a/x], where every occurrence of x in P is replaced

by a. To make sense of this, we mix the two interpretations of propositions and

types, naturally thinking of x as a term of type A and P as a proposition. In

the case where P does not contain any occurrences of x, this interpretation is the

same as for the connective ⇒.

We have the introduction rule:

Γ, x : A ` p : P ∀I
Γ ` (λx : A).p : (∀x : A).P

The type (∀x : A).P may be thought of as an indexed family of proofs. The

elimination rule corresponds to obtaining a single proof from this indexed familiy:

Γ ` a : A Γ ` f : (∀x : A).P
∀E

Γ ` f(a) : P [a/x]

and the computation rule relates the introduction and elimination rules:

((λx : A).p)a; p[a/x]

2.4.2 Existential quantifier

Under the BHK-interpretation, a proof of (∃x : A).P is a pair (a, p), where a : A

and p is a proof of P [a/x]. We think of this as providing a witness for the exis-

tential claim, that is, an object a, along with a proof that the proposition P holds

for a. This corresponds to the strengthened notion of existence in constructive

logic previously discussed. The introduction rule is given as:

Γ ` a : A Γ ` p : P [a/x]
∃I

Γ ` (a, p) : (∃x : A).P

The elimination rules project the first and second components of a pair:

Γ ` p : (∃x : A).P
∃E1Γ ` Fst p : A

Γ ` p : (∃x.A).P
∃E2

Γ ` Snd p : P [Fst p/x]

The operational behaviour of Fst and Snd are given by the computation rules:

Fst(p, q) 7→ p

Snd(p, q) 7→ q
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Note that these rules are very similar to those for conjunction – if P does not

depend on x these are the conjunction rules.

2.4.3 Dependent types

The types corresponding to the universal and existential quantifiers are known

collectively as dependent types. The universal quantifier, given by (∀x : A).P or∏
x:A P , is a dependent function type, a generalisation of a function type to an

indexed family of functions. The existential quantifier, given by (∃x : A).P or∑
x:A P , is a dependent pair type, as the second component of the pair depends

on the first.

Dependent pair types, in particular, are very expressive in the sense that they

have multiple interpretations. In addition to being considered a generalisation of

the product type, (∃x : A).P can be thought of as the subset type, expressing

{a ∈ A|P (a)}. The dependent pair does not just pick out a subset, it also pairs

each element a with evidence P (a) for their inclusion in the subset. This subset

interpretation will be used extensively in the implementation of vote counting as

mathematical proof.

2.5 More features of type theory

The vote counting as mathematical proof approach is implemented in the inter-

active theorem prover Coq. An interactive theorem prover is a software tool that

assists the user in developing formal proofs. Coq is based on a type theory called

the Calculus of Inductive Constructions (CIC), of which Martin-Löf type theory

is a fragment. There are some other features of CIC that will be relevant to our

implementation.

2.5.1 Universes

It is the case that every term has a type. In particular, since a type is a term,

this means that types also have types. An infinite hierarchy of types is thus

required, known as a hierarchy of universes. In CIC, this is given by the following

definition:

Definition 2.3. The type of types are sorts. The set of sorts S is given by

S := {Prop, Set,Type(i) | i ∈ N}
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where

Prop : Type(1)

Set : Type(1)

Type(i) : Type(i+ 1).

In CIC, while we operate with the Curry-Howard isomorphism in mind, a

distinction is made between Prop and Set for technical reasons that seems to

separate out propositions and types. Formally, Prop is the type of logical propo-

sitions with terms corresponding to proofs, while Set is the type of types as used

in programming with terms corresponding to programs. Set may just be though

of as the sort Type with a specified level in the hierarchy, while Prop is thought

of in terms of its operational behaviour. Terms of type Prop have their com-

putational content forgotten, and so correspond to a propositions under a truth

conditions interpretation.

Remark 2.4. This language can be confusing. In our use of CIC to come, we

will use the terms ‘propositions’ and ‘types’ according to the Curry-Howard iso-

morphism, not to refer to the sorts Prop, Set or Type. The use of Prop and Type

as sorts in our implementation does not correspond to our natural language use

of ‘propositions’ and ‘types’, rather a consideration of the operational behaviour

of Prop as proof-irrelevant.

2.5.2 Inductive types

Just as types may be formed by the formation rules from before, types may also

be formed by induction rules. An inductive type T is thought of as being ‘freely

generated’ by a finite collection of constructors, where constructors are functions

with zero or more arguments and codomain T . An inductive type is freely gen-

erated in the sense that it is built by repeated application of the constructors.

In this way, infinite types are defined by recursion and have properties proved

of them by induction. In type theory, recursion and induction are the same – a

proof by induction is a proof object defined by recursion.

Some inductive types are associated with induction in mathematics, such as

the natural numbers, and others are not, such as lists. For example, the type

N of natural numbers is given as an inductive type with two constructors; 0 : N
and succ : N → N. This says that every term of type N is either 0 or the

constructor succ applied to a previously constructed term of the type. This builds



2.6. THE COQ PROOF ASSISTANT 27

the terms succ(0), succ(succ(0)), succ(succ(succ(0))) and so on. An example of a

type removed from the mathematical notion of induction is the type of finite lists

List(A), with elements terms of type A. This has two constructors: nil : List(A)

and cons : A→ List(A)→ List(A).

2.5.3 Dependent inductive types

The combination of inductive types and dependent types leads to a very precise

and expressive language. They are combined by giving inductive types with

dependently typed constructors, for example, the following definition in Coq :

Inductive even : nat -> Prop :=

even0 : even 0

| even2 : forall x : nat, even x -> even (S (S x)).

where the second constructor, even2, is dependently typed. Thought of another

way, this definition specifies two ways of giving evidence that a number is even.

The first constructor even0 is atomic evidence that zero is even, while even2

allows us to construct evidence that S (S x) is even from evidence that x is

even. It is the expressiveness of dependent inductive types that will allow us to

implement vote counting as mathematical proof in Coq.

2.6 The Coq proof assistant

The Coq proof assistant will act as a logical framework in which we build the

deductive system of voting counting as mathematical proof, discussed in Chapter

1. Before starting this implementation, we provide some remarks on how mathe-

matics is undertaken in Coq, and how programs may automatically be generated

from functions.

2.6.1 Goals and tactics

Under the propositions as types interpretation, proving a proposition corresponds

to providing a term of the associated type. Mathematics in type theory is con-

structing terms of particular types. Such proof term can be very complicated,

but since they governed by procedural rules, the Coq system is able to provide

tools in the form of goals and tactics to assist in building terms piece by piece,

as opposed to giving the correctly typed term in its entirety.
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A goal refers to type of which the user wants to construct a term. Commands

known as tactics can then be applied to break down the goal down into simpler

subgoals.

Definition 2.5. Let G be a goal. A tactic applied to G produces a (possibly

empty) list of subgoals G1, . . . , Gk, and has an associated function taking terms

g1 : G1, . . . , gk : Gk to a term g : G, i.e. a solution of the goal.

The construction of a proof term in Coq ends with the command Qed, which

checks whether the proof is finished, saving the proof and generating the complete

proof term. The term is submitted to Coq ’s type checker to ensure that it is well-

formed and typed before being accepted. The type checker is the very small,

thoroughly tested, code base for Coq in which trust lies.

2.6.2 Program extraction

Functions written in Coq correspond to functions that could be written in an

ordinary functional programming language. Coq has the ability to map functions

developed in the system to functions in a specified programming language, and in

this way, can produce software in which the behaviour of the extracted function

is faithfully described by the function in Coq.[5, p.285] While the Coq extraction

mechanism is highly trusted, our approach to electronic vote counting means

also produces an independently verifiable certificate so it is not necessary to look

further into the extraction mechanism here.



Chapter 3

Majority Criterion

To compare vote-counting protocols objectively – free from any personal bias to-

wards methods producing a more politically favourable outcome – mathematically

defined voting system criteria are used. These are statements of properties that

are potentially desirable for a vote-counting protocol to satisfy. One such example

is the majority criterion, commonly defined in the literature for a single-winner

voting system, but easily generalised to the case of multiple winners and adapted

to STV as follows.

Definition 3.1. The majority criterion states that if candidate c receives more

than 50% of the first preference votes, then c is a winner of the election.

In this chapter, we prove that the formulation of Simple STV under ‘vote-

counting as mathematical proof’ in [15] satisfies the majority criterion. This

corresponds to proving the property for the specification inside Coq. If it is true

of the specification, then it is true of any implementation conforming to this

specification, such as the implementation by program extraction.

Proof of the majority criterion acts as a sanity check. It is not part of the

formal verification from specification to implementation, but acts as a verification

measure in the move from vote counting protocol to specification, to make sure the

specification has accurately captured the protocol and so has the same properties.

It also serves as a proof of concept, demonstrating that the ‘vote-counting

as mathematical proof’ approach readily accommodates comparison by voting

system criteria. Since electronic vote-counting means the ease of manual counting

is no longer a factor in the design of a voting systems, it allows for the development

of more complex yet fairer voting systems. The ability to conveniently prove

voting system criteria is important to compare any new systems.

29
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To this end, we begin by describing the specification of Simple STV as logic-

lookalike rules, first by providing the mathematical formalisation then the trans-

lation into Coq. This is not original work – the mathematical formalisation and

Coq implementation come from [15]. Following the same two stages of develop-

ment, we state and prove the majority criterion. This is an original addition to

the Coq implementation from [15]. To prove the majority criterion, we first prove

a property that holds at every stage of the count, known as an invariant of the

system. The main theorem is then deduced used the invariant.

3.1 Simple STV

In an STV system, ballots are ranked lists of candidates ordered in terms of

personal preference. The system relies on having a quota – a number of votes

that a candidate must receive in order to be elected. The specification in [15] is

fully general with respect to the quota. The a natural language specification of

Simple STV is given as follows:

1. If a candidate has enough first preferences to meet the quota, they are

declared elected and any votes for this candidate surplus to the quota are

transferred.

2. If all first preferences are counted and the number of seats is strictly smaller

than the sum of the number of candidates that are either still in the run-

ning or already elected, then a candidate with the least number of first

preferences is eliminated and their votes are transferred.

3. If a vote is transferred, it is assigned to the next candidate on the ballot.

4. Vote counting is finished if either the number of elected candidates is equal

to the number of available seats, or if the number of remaining hopeful

candidates plus the number of elected candidates is less than or equal to

the number of available seats.

3.1.1 Mathematical formalisation

Let C be a set of candidates running for election and B ∈ List(C) be a list

of candidates with order corresponding to a preference ranking, representing a

ballot. Note that this definition of a ballot is intended to be very general – it

does not exclude multiple rankings for a single candidate, nor stipulate that all
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candidates must be ranked. However, this is easily done, as will be seen in the

formalisation of a real-world protocol in Chapter 4.

Definition 3.2. If b ∈ List(B) represents the list of ballots cast, q ∈ N represents

the quota and s ∈ N represents the number of seats available to be filled, then a

judgement takes one of two forms:

(b, q, s) ` state(u, a, t, h, e)

where u ∈ List(B) represents the list of uncounted ballots, a : C → List(B) the

assignment recording for a particular candidate c the ballots with first preference

c that have been counted, t : C → N the running tally, h : List(C) the list of

candidates still in the running and e : List(C) the list of already elected candidates;

or

(b, q, s) ` winners(w)

where w ∈ List(C) represents the list of winners of the election.

The first judgement corresponds to an intermediate state of the count, while

the second judgement corresponds to a final state of the count.

Remark 3.3. Certain choices were made above with the eventual Coq formula-

tion in mind, rather than purely mathematical reasons. For example, the hopeful

candidates need not be ordered. It would make sense to represent them as a set,

however it is easier to work with lists in Coq.

Using the judgements, we define rules mimicking the form of deduction rules

in proof theory. Side conditions are used to express relations between the vote

counting state in the premise and the vote counting state in the conclusion.

Definition 3.4. There are eight deduction rules.

Axiom describes the initial state of the vote-count. Let nty : C → N be the null

tally given by nty(c) = 0 for all c ∈ C, and let nas : C → List(B) be the null

assignment given by nas(c) = [] for all c ∈ C. Then define the rule:

(b, q, s) ` state(u, a, t, h, e)
(Ax)

• u = b, a = nas, t = nty, e = []

• h pairwise distinct, C =
⋃
h

read as:
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“At the start of the count all ballots are uncounted, no ballots

have been assigned to a candidate, the running tally for every

candidate is zero, no candidates have been elected, every candidate

is in the list of hopeful candidates and the list of hopeful candidates

is pairwise distinct.”

Count one vote captures counting the first preference on a ballot. To specify

that the list of uncounted votes is updates to remove the counted vote, let

eqe be the relation

eqe(x, l, l′) ≡ ∃l1, l2.
(
l = l1 # l2 ∧ l′ = l1 #[x] # l2

)
holding for x ∈ X, a list l ∈ List(X) and a list l′ ∈ List(X) when l′ is

equal to l except that l′ additionally contains x at an arbitrary position. To

express that the assignment is updated, let add be the relation

add(c, v, a, a′) ≡ ∃l1, l2.
(
a(c) = l1 # l2 ∧ a′(c) = l1 #[v] # l2 ∧
∀d ∈ C.(d 6= c =⇒ a′(d) = a(d)

)
holding for a candidate c, a ballot v, an assignment a and an assignment

a′ when a equals a′ except that the evaluation of the assignment a′ for c

includes v inserted at an arbitrary position. To express that the tally is

updated, let inc be the relation

inc(c, t, t′) ≡ (t′(c) = t(c) + 1) ∧ ∀d ∈ C.(d 6= c =⇒ t′(d) = t(d))

holding between a candidate c, an ‘old’ tally t and a ‘new’ tally t′ when the

new tally is the old tally with the value for c incremented by one. Then

define the rule:

(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` state(u′, a′, t′, h, e)
(C1)

• eqe((c:cs), u′, u)), c ∈ h, t(c) < q,

• add(c, c:cs, a, a′) inc(c, t, t′)

read as:

“If there is an uncounted vote with first preference c, c is a

hopeful and the tally of c is below the quota, record this vote by

adding it to the assignment for c and increase the tally for c by

one.”
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Elect applies when a candidate has reached the quota. Let eqe be defined as

above, then define the rule:

(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` state(u, a, t, h′, e′)
(El)

• c ∈ h, t(c) = q, |e| < s

• eqe(c, h′, h), eqe(c, e, e′)

read as:

“If there is a hopeful candidate who has reached the quota

and there are still seats available, then this candidate is declared

elected by moving them from the list of hopefuls to the list of

elected candidates.”

Transfer votes applies when a candidate is no longer in the running and the

uncounted ballots are updated to transfer their votes to the next preference.

To ensure the ballots in the list of uncounted votes are updated, let repl be

the relation

repl(x, y, l, l′) ≡ ∃l1, l2. (l = l1 #[x] # l2 ∧ l′ = l1 #[y] # l2)

holding between x, y ∈ X and two lists l, l′ ∈ List(X) when l is equal to l′

except with one occurrence of x in l replaced by y. Then define the rule:

(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` state(u′, a, t, h, e)
(Tv)

• c /∈ h

• repl((c:cs), cs, u, u′)

read as:

“If there is an uncounted vote with first preference c and c is

not a hopeful candidate, then delete this first preference from the

ballot.”

Empty votes applies when there are empty votes in the list of uncounted ballots,

either due to initially empty ballots or successive transfers. Define the rule:

(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` state(u′, a, t, h, e)
(Ey) • eqe([], u′, u)

read as:

“If there are uncounted votes with no preferences, they are

discarded.”
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Transfer least applies when all of the ballots have been counted but all of the

seats have not been filled and a candidate with minimal number of first

preferences is eliminated. To update the list of hopeful candidates, let eqe

be the relation given earlier. Then define the rule:

(b, q, s) ` state([], a, t, h, e)

(b, q, s) ` state(u, a, t, h′, e)
(Tl)

• |e|+ |h| > s, c ∈ h

• ∀d ∈ h.(tc ≤ td), eqe(c, h, h′), u = a(c)

read as:

“If the number of available seats exceeds the sum of hopeful

and elected candidates, no uncounted votes remain, and candidate

c has a minimal number of votes, then c is removed from the list

of hopefuls and all votes cast for c are transferred.”

Hopeful win declares the winners of the election in the case where the number

of elected plus hopeful candidates is no greater than the number of sets.

Define the rule:

(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` winners(w)
(Hw)

• |e|+ |h| ≤ s

• w = e #h

read as:

“If the number of candidates that are either hopeful or elected

is less than or equal to the number of seats available, then scrutiny

ceases and all candidates that are either elected or hopeful are

declared winners of the election”.

Elected win declares the winners of the election in the case where the number

of seats is the same as the number of candidates marked as elected. Define

the rule:

(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` winners(w)
(Ew)

• |e| = s

• w = e

read as:

“If the number of elected candidates equals the number of seats

available, scrutiny ceases and the elected candidates are declared

the winners of the election”.
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Finally, we recall the definition of provability from Chapter 1 and place it the

context of the deductive system just defined.

Definition 3.5. A state of the count (b, q, s) ` n, where n is of the form state(u, a, t, h, e)

or winners(w) is said to be provable if there exists a sequence of correct applica-

tions of the rules in Definition 3.4, ending with (b, q, s) ` n and starting with

Ax.

3.1.2 Formalisation in Coq

We now translate the mathematical formalisation of judgements and rules into

types in Coq, and explain how the Coq extraction mechanism can be applied to

a theorem about the existence of winners in order to generate a vote-counting

program. The code below comes from the file STV_majority_criterion.v.

Implementation 3.6. We begin by defining the type of candidates and the list

of all candidates running in the election. We use the keyword Variable, which

has the expected mathematical meaning and allows us to work in full generality,

instantiating with specific candidates later on.

Variable cand: Type.

Variable cand_all: list cand.

These types are required to satisfy certain properties. Firstly, the list of all

candidates must be pairwise distinct, that is, each member of the list is unique.

Secondly, we must specify that every candidate appears in the list of all candidates.

Finally, we require that equality of candidates is decidable, that is, for any two

candidates there is either a proof that they equal or a proof that they are not equal.

Hypothesis cand_pd: PD cand_all.

Hypothesis cand_finite: forall c, In c cand_all.

Hypothesis cand_eq_dec: forall c d:cand, {c=d} + {c<>d}.

We use the keyword Hypothesis. This defines an arbitrary proof term, for

example cand_eq_dec is an unspecified proof of the proposition given by the type

forall c d:cand, {c=d} + {c<>d}. Note also that in this proposition, instead

of using the familiar disjunction \/ we use +, which is defined in the same way

except with values on the level of Type rather than Prop. This is the technicality

in Coq remarked on in Chapter 2, the practical upshot being that values in Type

are not just true or false but also carry evidence for the truth or falsity, whereas

values in Prop are only the former.

A ballot is defined according to the mathematical formalisation as a list of

candidates.
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Definition ballot := list cand.

A judgement takes one of two possible forms, so we encode them as an induc-

tive type with two constructors. We call the type Node, the name given to a valid

judgement in a proof tree.

Inductive Node :=

state: (** intermediate states **)

list ballot (* uncounted votes *)

* (cand -> list ballot) (* assignment of counted votes to first preference candidate *)

* (cand -> nat) (* tally *)

* (list cand) (* hopeful candidates still in the running *)

* (list cand) (* elected candidates no longer in the running *)

-> Node

| winners: (** final state **)

list cand -> Node. (* election winners *)

We read this as saying there are two ways to construct a term of type Node.

The first way is to apply the state constructor to a five-tuple consisting of a list

of uncounted votes, an assignment, a tally, a list of hopeful candidates and a list

of elected candidates; the second way is to apply the constructor winners to a list

of candidates.

The rules are encoded in a single dependent inductive type, more specifically

as a parametrised inductive type with dependently typed constructors. This type

is referred to as ‘type of proofs’ in [15], and to minimise confusion we call it the

type of proof sequences. It specifies what constitutes evidence for a judgement

having the property of provability. The type of proof sequences is parametrised by

the list of ballots cast, the quota and the number of seats, and it has seven con-

structors, one corresponding to each rule. For example, consider the constructor

corresponding to the axiom:

ax : forall u a t h e, (** start counting **)

(forall c: cand, In c h) -> (* if all candidates are hopeful and *)

PD h -> (* hopefuls are pairwise distinct *)

u = b -> (* and the list of uncounted ballots contains all ballots *)

a = nas -> (* and the initial assignment is the null assignment *)

t = nty -> (* and we begin with the null tally *)

e = nbdy -> (* and nobody is elected initially *)

Pf b q s (state (u, a, t, h, e)) (* we start counting with this data *)

We read this as saying if we give a piece of evidence each that all candidates are

hopeful, the hopeful candidates are pairwise distinct, the list of uncounted ballots

contains all ballots, the initial assignment is the null assignment, the initial tally

is the null tally and nobody has been elected, then we can construct a term of
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the proof type. This corresponds directly to the mathematical formalisation given

previously.

The complete type is given below. By comparing each constructor with the

corresponding rule given mathematically in Definition 3.4, it is a straightforward

exercise to convince oneself that they are the same. The functions described in the

mathematical formalisation of Simple STV are all easily defined in Coq. Their

definitions are not provided here but are all included in the code.

Inductive Pf (b: list ballot) (q: nat) (s: nat) : Node -> Type :=

ax : forall u a t h e, (** start counting **)

(forall c: cand, In c h) -> (* if all candidates are hopeful and *)

PD h -> (* hopefuls are pairwise distinct *)

u = b -> (* and the list of uncounted ballots contains all ballots *)

a = nas -> (* and the initial assignment is the null assignment *)

t = nty -> (* and we begin with the null tally *)

e = nbdy -> (* and nobody is elected initially *)

Pf b q s (state (u, a, t, h, e)) (* we start counting with this data *)

| c1 : forall u nu a na t nt h e f fs, (** count one vote **)

Pf b q s (state (u, a, t, h, e )) -> (* if we are counting votes, *)

eqe (f::fs) nu u -> (* and have an uncounted vote with first preference f removed *)

In f h -> (* and f is a hopeful *)

t f < q -> (* and this isn’t surplus *)

add f (f::fs) a na -> (* and the new assignment records the vote for f *)

inc f t nt -> (* and the new tally increments the votes for f by one *)

Pf b q s (state (nu, na, nt, h, e)) (* we continue with the updated tally and assignment *)

| el : forall u a t h nh e ne c, (** elect a candidate **)

Pf b q s (state (u, a, t, h, e)) -> (* if we have an uncounted vote with first preference f *)

In c h -> (* and c is a hopeful *)

t(c) = q -> (* and c has enough votes *)

length e < s -> (* and there are still unfilled seats *)

eqe c nh h -> (* and f has been removed from the new list of hopefuls *)

eqe c e ne -> (* and added to the new list of elected candidates *)

Pf b q s (state (u, a, t, nh, ne)) (* then proceed with updated hopeful and elected candidates *)

| tv : forall u nu a t h e f fs, (** transfer vote **)

Pf b q s (state (u, a, t, h, e)) -> (* if we are counting votes *)

~(In f h) -> (* and f no longer in the running *)

rep (f::fs) fs u nu -> (* and f is being removed from an uncounted ballot *)

Pf b q s (state (nu, a, t, h, e)) (* we continue with updated set of uncounted votes *)

| ey : forall u nu a t h e, (** empty vote **)

Pf b q s (state (u, a, t, h, e)) -> (* if we are counting votes *)

eqe [] nu u -> (* and an empty vote is removed from uncounted votes *)

Pf b q s (state (nu, a, t, h, e)) (* continue with the updated set of uncounted votes *)

| tl : forall u a t h nh e c, (** transfer least **)

Pf b q s (state ([], a, t, h, e)) -> (* if we have no uncounted votes *)

length e + length h > s -> (* and there are still too many candidates *)

In c h -> (* and candidate c is still hopeful *)

(forall d, In d h-> t c <= t d) -> (* but all others have more votes *)

eqe c nh h -> (* and c has been removed from the new list of hopefuls *)

u = a(c) -> (* and marked to be transfered *)

Pf b q s (state (u, a, t,nh, e)) (* transfer c’s votes and proceed with new hopefuls *)

| hw : forall w u a t h e, (** hopefuls win **)

Pf b q s (state (u, a, t, h, e)) -> (* if at any time *)

length e + length h <= s -> (* we have more hopeful and elected candidates than seats *)
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w = e ++ h -> (* and the winning candidates are their union *)

Pf b q s (winners (w)) (* then they are declared winners *)

| ew : forall w u a t h e, (** elected win **)

Pf b q s (state (u, a, t, h, e)) -> (* if at any time *)

length e = s -> (* we have as many elected candidates as seats *)

w = e -> (* and the winners are precisely the elected candidates *)

Pf b q s (winners w). (* they are declared the winners *)

Comparing this to the mathematical formalisation, a term p of type Pf b q s n

corresponds to a sequence of correct rule applications beginning with the Ax

rule and ending in the judgement (b, q, s) ` n, where n is either of the form

state(u, a, t, h, e) or winners(w).

Remark 3.7. The law of excluded middle A∨¬A is not constructively valid, since

not having a proof of A does not ensure there is a proof ¬Am and vice versa, and

so it does not hold in the logic of Coq. However, we can prove A ∨ ¬A is true

for certain A, as was the case for the decidability of equality of candidates.

This completes the specification of Simple STV. An implementation can be

produced directly from this specification by proving that every election has an

outcome, that is, a proof sequence ending in a judgement declaring winners.

The Coq program extraction mechanism then automatically constructs a prov-

ably correct program in Haskell that determines the election winners, while also

producing a proof sequence that may be independently verified.

Implementation 3.8. The theorem is formulated as follows.

Theorem ex_winners_pf: forall b q s, q > 0 ->

existsT w: list cand, Pf b q s (winners w).

Rather than exists we use existsT, which is introduced notation for the type

level existential quantifier. The reason for this choice is the same as the choice

of + instead of \/ discussed in Implementation 3.6. That is, existT carries the

evidence of existence, in this case a proof of the election outcome, rather than

solely the outcome.

To demonstrate how we may use this theorem to extract a vote counting

program, we construct a toy example.

Example 3.9. The Simple STV implementation was given as a section in Coq.

Within a section, the keywords Variable and Hypothesis are used to make def-

initions local to the section. On closing the section, the variables and hypotheses
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become extra function parameters for the global definitions made within the sec-

tion, such as those using the keyword Lemma, Theorem and Define.

This means outside the section, the theorem about the existence of winners

corresponds to a function with added parameters for the variables and hypotheses.

We define four candidates for our example.

Inductive cand := Alice | Bob | Charlie | Deliah.

Definition cand_all := [Alice; Bob; Charlie; Deliah].

Proofs are then provided for the following lemmas, corresponding to the hy-

potheses before.

Lemma cand_pd: PD cand_all.

Lemma cand_finite: forall c, In c cand_all.

Lemma cand_eq_dec : forall c d : cand, {c = d} + {c <> d}.

Then we define the main function.

Definition cand_ex_winners_pf :=

ex_winners_pf cand cand_all cand_pd cand_finite cand_eq_dec.

Program extraction is then given by the following.

Extraction Language Haskell.

Extraction "STVCode" cand_ex_winners_pf.

In addition to the extracted code, a ‘wrapper’ piece of code is written to visu-

alise the proof tree. It is important to note that this does not alter the extracted

program, as the code would no longer necessarily be provably correct according to

the specification. Figure 3.1 shows a sample output from the extracted program

with the wrapper, with horizontal lines representing a deduction from one correct

vote-counting state to the next, sanctioned by the rule at the lefthand side.

(ax)---------------------------------------------------------------------------------------

([[Alice,Bob], ...], Alice[0] Bob[0] Charlie[0] Deliah[0], [Alice,Bob,Charlie,Deliah], [])

(c1)-------------------------------------------------------------------------------------------

([[Alice,Charlie], ...], Alice[1] Bob[0] Charlie[0] Deliah[0], [Alice,Bob,Charlie,Deliah], [])

(c1)--------------------------------------------------------------------------------------------

([[Deliah,Charlie], ...], Alice[2] Bob[0] Charlie[0] Deliah[0], [Alice,Bob,Charlie,Deliah], [])

(el)-------------------------------------------------------------------------------------------

([[Deliah,Charlie], ...], Alice[2] Bob[0] Charlie[0] Deliah[0], [Bob,Charlie,Deliah], [Alice])

(c1)--------------------------------------------------------------------------------------

([[Bob,Alice], ...], Alice[2] Bob[0] Charlie[0] Deliah[1], [Bob,Charlie,Deliah], [Alice])

(c1)------------------------------------------------------------------------------------

([[Charlie], ...], Alice[2] Bob[1] Charlie[0] Deliah[1], [Bob,Charlie,Deliah], [Alice])

(c1)---------------------------------------------------------------------

(*, Alice[2] Bob[1] Charlie[1] Deliah[1], [Bob,Charlie,Deliah], [Alice])
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(tl)------------------------------------------------------------------------------------

([[Deliah,Charlie], ...], Alice[2] Bob[1] Charlie[1] Deliah[1], [Bob,Charlie], [Alice])

(tv)-----------------------------------------------------------------------------

([[Charlie], ...], Alice[2] Bob[1] Charlie[1] Deliah[1], [Bob,Charlie], [Alice])

(c1)--------------------------------------------------------------

(*, Alice[2] Bob[1] Charlie[2] Deliah[1], [Bob,Charlie], [Alice])

(el)--------------------------------------------------------------

(*, Alice[2] Bob[1] Charlie[2] Deliah[1], [Bob], [Charlie,Alice])

(ew)-----------------------

winners ([Charlie,Alice])

Figure 3.1: An example STV proof

3.2 Proof of the majority criterion

Now that we have developed the specification of Simple STV, we prove it satisfies

the majority criterion. Rather than approaching this proof directly, we use the

standard technique of strengthening the induction hypothesis to an invariant – a

statement that holds at every intermediate state of the count – and proving this

first. A suitable invariant is one which is correct, that is, holds at every stage,

and is able to be used to prove the theorem.

We begin by providing a mathematical formalisation of the invariant and the

theorem, using the same notation as previously introduced for Simple STV.

3.2.1 Mathematical formalisation

Suppose there is a function cfp : cand×List(B)→ N, read count first preferences,

that takes a candidate c and a list of ballots l and returns the number of ballots

in l for which c is the first preference. As before, let b ∈ List(B) represent the list

of ballots cast. Then we can state the theorem.

Definition 3.10. The majority criterion says that candidate c is a winner if

cfp(c, b) > |b|/2.

Further, suppose there is a function ct : (cand→ N)× List(C)→ N, read sum

of current tallies, which takes a running tally and a list of candidates l ∈ List(C)

and returns the sum of the tallies for each candidate in the list, namely

ct(t, l) =
∑
c∈l

t(c).

Then we can state the following lemma.
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Lemma 3.11. If a candidate c ∈ C satisfies the hypothesis of the majority cri-

terion, cfp(c, b) > |b|/2, then at an intermediate state of the count given by

(b, q, s) ` state(u, a, t, h, e), either c is an elected candidate, or c is a hopeful

candidate and the following inequalities hold:

(i) t(c) + cfp(c, u) > |b|/2

(ii) ct(t, h # e) + |u| ≤ |b|

The instance where c is elected is the same statement as the majority criterion.

In the case where c is a hopeful candidate, together (i) and (ii) describe an early

state of the count in which not enough first preferences have been counted for c

to reach the quota and be elected. Specifically, condition (ii) captures that not

enough first preferences have been counted, and condition (i) says that taking

into account the first preferences for c left uncounted c will satisfy the hypothesis

of the majority criterion.

To prove the invariant, we show that it is true at the start of the count, and is

then preserved by every valid rule application. Below is an outline of the proof,

demonstrating the approach on three rules only, with the full formal proof to be

found in the file STV_majority_criterion.v, line 1451. Note that this proof is

constructive – we prove the disjunction by giving a proof of one of the disjuncts,

including the information of which disjunct it proves.

Proof (Lemma 3.13). Consider any c ∈ C such that cfp(c, b) > |b|/2. The count

begins with the following provable state:

(b, q, s) ` state(u, a, t, h, e)
(Ax)

• u = b, a = nas, t = nty, e = []

• h pairwise distinct, C =
⋃
h

Since no candidate has been elected and every candidate is in the list of hope-

ful candidates, we want to show that inequalities (i) and (ii) hold. Using the

side-conditions for Ax and the definition of nty,

t(c) + cfp(c, u) = nty(c) + cfp(c, b)

= 0 + cfp(c, b)

> |b|/2
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by the initial assumption, so (i) is true. Furthermore,

ct(t, h # e) + |u| = ct(nty, h) + |b|
= 0 + |b|
≤ |b|

so (ii) is also true and the lemma holds for the initial state of the count.

Now assume there is a provable intermediate state of the count given by

(b, q, s) ` state(u, a, t, h, e) for which the invariant is true, that is

(c ∈ e) ∨
(
c ∈ h ∧

(
t(c)+cfp(c, u) > |b|/2

)
∧
(
ct(t, h # e) + |u| ≤ |b|

))
(3.1)

We proceed by showing that if any of the remaining six rules may be applied,

then the invariant is also true of the conclusion of the rule.

Suppose the ‘count one vote’ rule may be applied, corresponding to the fol-

lowing situation:

(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` state(u′, a′, t′, h, e)
(C1)

• eqe((f :fs), u′, u)), f ∈ h, t(f) < q,

• add(f, f :fs, a, a′) inc(f, t, t′)

We want to show the invariant holds for the conclusion, namely:

(c ∈ e) ∨
(
c ∈ h ∧

(
t′(c)+cfp(c, u′) > |b|/2

)
∧
(
ct(t′, h # e) + |u′| ≤ |b|

))
If the first disjunct of (3.1) is true, then we have the contradiction that c is

both an elected candidate and a hopeful candidate, from which we may deduce

anything. If the second disjunct of (3.1) is true, then observe that while u 6= u′

and t 6= t′, the following sums are equal:

t′(c) + cfp(c, u′) = t(c) + cfp(c, u)

ct(t′, h′ # e′) + |u′| = ct(t, h′ # e′) + |u|

The desired result follows by substitution. See the code for proofs of these equal-

ities.

Other rules are more involved. Consider, for example, the ‘transfer least’ rule:
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(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` state(u′, a, t, h′, e)
(Tl)

• u = [], |e|+ |h| > s, f ∈ h

• ∀d ∈ h.(t(f) ≤ t(d)), eqe(f, h, h′), u′ =

a(f)

Showing the invariant holds for the conclusion corresponds to proving

(c ∈ e) ∨
(
c ∈ h′ ∧

(
t(c)+cfp(c, u′) > |b|/2

)
∧
(
ct(t, h′ # e) + |u′| ≤ |b|

))
.

If the first disjunct of (3.1) is true, then the result is obvious. If the second

disjunct of (3.1) holds, then there are two cases to consider, as c may or may not

be the candidate having their votes transferred. Suppose c is not the candidate

having their votes transferred, rather it is some distinct candidate f 6= c. Then

c ∈ h′ and

t(c) + cfp(c, u′) = t(c) + cfp(c, a(f))

≥ t(c) + cfp(c, [])

= t(c) + cfp(c, u)

> |b|/2

Furthermore, we can prove that t(f) = |a(f)|, so we can show

ct(t, h′ # e) + |u′| = ct(t, h # e) + |u|
≤ |b|

So the invariant holds. Now suppose c is the candidate having their votes trans-

ferred. Then we can derive a statement that contradicts the initial assumption

cfp(c, b) > |b|/2.

For the rules that declare winners, the invariant automatically holds.

We now use the invariant to prove the main theorem. Proving the majority

criterion holds requires placing a reasonable condition on the quota. While the

implementation of STV is fully general, the most commonly used quota in STV

elections is the Droop quota.

Definition 3.12. The Droop quota qd is given by

qd =
|b|

s + 1
+ 1
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The condition we place on the quota for the main theorem is

q ≥ |b|/2s.

This is a somewhat weaker condition, in the sense that it is implied by the droop

quota. Therefore, the theorem is still sufficiently general. We restate the theorem

to include this condition.

Theorem 3.13. Suppose q ≥ |b|/2s. Then if c ∈ C satisfies the inequality

cfp(c, b) > |b|/2, c is a winner.

Proof. Assume 2sq ≥ |b|, cfp(c, b) > |b| and that (b, q, s) ` winners(w) is provable.

We want to show that any such c is contained in w. There are two cases to

consider, corresponding to the rules that allow us to declare a winner.

In the first case, where the sum of the elected candidates and the hopeful

candidates is no more than the number of seats, and so together they are declared

the winners, the theorem follows easily from the invariant. Suppose there exists

a provable state of the count (b, q, s) ` state(u, a, t, h, e) such that (b, q, s) `
winners(w) is obtained by applying the ‘hopeful win’ rule, as follows.

(Hw)
(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` winners(w)

• |e|+ |h| ≤ s

• w = e #h

Then the invariant tells us

c ∈ e ∨
(
c ∈ h ∧ (t(c) + cfp(c, u) > |b|/2) ∧ (ct(t, h # e) + |u| ≤ |b|)

)
.

If the first disjunct of the invariant holds, then c ∈ e and so c ∈ w, since w = e #h.

If the second disjunct holds, then c ∈ h and so c ∈ w, since w = e #h. Therefore

c is winner, as required.

In the second case, where there are as many elected candidates as seats and so

the elected candidates are declared the winners, proving the theorem is more diffi-

cult. Suppose there exists a provable state of the count (b, q, s) ` state(u, a, t, h, e)

such that (b, q, s) ` winners(w) is obtained by applied the ‘elected win’ rule, as

follows.

(Ew)
(b, q, s) ` state(u, a, t, h, e)

(b, q, s) ` winners(w)

• |e| = s

• w = e
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Then the invariant tells us

c ∈ e ∨
(
c ∈ h ∧ (t(c) + cfp(c, u) > |b|/2) ∧ (ct(t, h # e) + |u| ≤ |b|)

)
.

If the first disjunct of the invariant holds, then c ∈ e and so c ∈ w, since

w = e. If the second disjunct holds, we must identify a contradiction, since c

satisfies the hypothesis of the majority criterion by assumption, and yet is not

being elected.

The contradiction comes from the third conjunct of the second disjunct of the

invariant. Intuitively, we think of this as saying that it is not the case that too

few votes have been counted to elect c, so c must not satisfy the hypothesis of

the majority criterion and thus isn’t elected. To prove this contradiction involves

manipulating inequalities, which is very well-suited to completing in Coq but not

very enlightening, and so is omitted here. As usual, the complete formal proof

may be found in the code.

3.2.2 Formalisation in Coq

We now outline the implementation of the mathematical formalisation in Coq.

This begins with the auxiliary functions to count first preferences and sum the

current tallies.

Implementation 3.14. The two functions are readily encoded as recursive func-

tions, where a function f is recursive if it maps x to an expression in which f

occurs. This is done using the Fixpoint keyword and pattern matching.

Fixpoint count_fp (c: cand) (l: list ballot) : nat :=

match l with

[] => 0

| x::xs => match x with

[] => count_fp c xs

| y::ys => if (cand_eq_dec c y) then (count_fp c xs + 1)%nat else count_fp c xs

end

end.

Fixpoint cnt_tly (t: cand -> nat) (l: list cand) : nat :=

match l with

| [] => 0

| c::cs => (t c + cnt_tly t cs)%nat

end.

Along with the definitions, we prove some basic lemmas that were found to be

necessary in the proof of the invariant. Firstly, we prove that both functions have

a homomorphism property.
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Lemma count_fp_hom (c: cand) (l1 l2: list ballot) :

count_fp c (l1 ++ l2) = (count_fp c l1 + count_fp c l2)%nat.

Lemma cnt_tly_hom (l1 l2: list cand) (t: cand -> nat) :

cnt_tly t (l1 ++ l2) = cnt_tly t l1 + cnt_tly t l2.

We also prove an upper bound for the first preferences for a candidate.

Lemma count_fp_bnd (c: cand) (l: list ballot) : count_fp c l <= length l.

It is worth remarking that we have used equivalent ways of giving lemmas and
theorems,

Lemma count_fp_bnd : forall c l, count_fp c l <= length l.

Neither form is preferred over the other as they correspond to the same type. We

compare the first form to saying ‘Let c be a candidate...’ and the second to the

expression ‘For all candidates c...’ and use a mix of the two, as is often found in

an informal proof.

The mathematical formalisation of the lemma and the theorem must be spe-

cialised to our implementation by including reference to states of the count. For

the lemma:

Lemma stv_inv : forall b q s c, s > 0 ->

2 * count_fp c b > length b ->

forall n, Pf b q s n ->

forall u a t h e, n = (state (u, a, t, h, e)) ->

(In c e) \/

((In c h) /\

(2 * (t c + count_fp c u) > length b) /\

(cnt_tly t (h ++ e) + length u <= length b)).

The first hypothesis excludes a degenerate case by requiring a nonzero number of

seats, and the second corresponds to the hypothesis of the majority criterion. The

third and fourth hypotheses specialise the lemma to our implementation of Simple

STV by supposing a correct state of the count. It is tempting to write these two

statements in the single hypothesis:

forall u a t h e, Pf b q s (state (u, a, t, h, e))

however, this term is not sufficiently general to allow us to perform induction on

the type of proofs. Induction must occur over a completely general instance, that

is, where all arguments are unconstrained variables. It suffices to pull out the

argument:

forall n, Pf b q s n ->

forall u a t h e, n = (state (u, a, t, h, e))
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The remainder of the statement of the lemma is a clear translation of the dis-

junction in the mathematical formalisation, using the functions defined in Imple-

mentation 3.13.

Proof of the invariant proceeds by induction on the type of proofs, which cor-

responds to implementing the proof outlined in section 3.2.1. In Coq, when the

keyword Inductive is used to define a type T , as in the case of Pf, an induction

principle called T_ind, a recursion principle called T_rec are automatically de-

fined. The induction tactic generates a subgoal for each possible form of term.

In this case, eight subgoals are generated and proof by induction corresponds to

stepping through these subgoals, with induction hypotheses added to the local

context for each rule. The induction tactic generates a subgoal for each possible

form of term. In this case, eight subgoals are generated and proof by induction

corresponds to stepping through these subgoals, with induction hypotheses added

to the local context for each rule.

We now implement the main theorem in Coq.

Implementation 3.15. The main theorem is given as:

Theorem maj: forall b q s w c,

s > 0 ->

2 * (s * q) >= length b ->

2 * count_fp c b > (length b) ->

Pf b q s (winners w) ->

In c w.

As in the lemma, we assume a nonzero number of seats. The second hypothesis is

the condition placed on the quota and the third is the hypothesis of the majority

criterion. Again, we specialise to include reference to the type of proofs, requiring

evidence that winners w is a provable state of the count.

We prove this theorem using the inversion tactic. Where the induction tactic

applies the induction principle for the type in question to generate a subgoal for

each constructor, the inversion tactic takes into account the form of hypothesis

to which it is applied, generating a subgoal only for the constructors that could

have been used to prove something of this form.[6] In this case, inversion on

p : Pf b q s (winners w) yields two subgoals corresponding to the rules hw

and ew, so the proof may proceed as outlined in section 3.2.1. The complete

formal proof is found in the code at line 1631.
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Chapter 4

Generic Termination

The vote counting rules as proof rules formulation has many desirable features.

The formal specification of the rules is in close correspondence to the natural

language specification; a provably correct vote counting program can be auto-

matically extracted from the specification; the extracted program generates an

independently-verifiable certificate in the form of a proof of the outcome; and it

is done in a natural environment for proving voting system criteria.

The approach may also be applied to different vote counting protocols. This

is evidenced in [15], in which both FPTP and Simple STV are formalised as

proof rules. In theory, other protocols may be given the same treatment, such as

other variants of STV. Since different electoral authorities across Australia use

different versions of STV, it is advantageous for an approach to provably correct,

independently verifiable electronic vote counting to be readily adaptable.

However, the current method means that each time a new protocol is consid-

ered, the formalisation is started essentially from scratch. This was the case with

FPTP and Simple STV. While Simple STV and other STV variants have many

commonalities, just altering one rule in Simple STV would necessitate updating

the type of proofs, updating proofs of any voting system criteria, and fixing the

relevant part of the proof of the existence of winners, along with many of the

lemmas on which this depends.

The extent of the revisions required to adapt an existing formalisation to a

very similar protocol is great, while at the same time, the features in common

between the formalisations of two very different protocols – FPTP and Simple

STV – are many. Thus, it makes sense to abstract the features in common to all

protocols under the vote counting as mathematical proof approach to see if we

can establish a generic framework. Results may then be proved of the framework,

49
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which can then by instantiated with specific protocols. Under this approach, we

can change the protocol without having to completely re-do a proof. Rather, it

is only necessary to re-establish for one or two relevant rules.

In this chapter, we construct a general framework referred to as generic ter-

mination, where a terminating proof sequence is one ending in a final judgement

declaring the winners. We begin by defining this framework, which involves sep-

arating out the rules, rather than giving them as a single type, and then defining

a termination condition local to the rules.

After establishing the generic termination framework, we demonstrate its

adaptability by first applying it to FPTP and then Simple STV. Finally, we

extend this proof of concept to a real world vote counting protocol, the version

of STV used by The Australian National University Union Incorporated (the

Union), given in Appendix A. This protocol uses a common feature of STV that

is not used in Simple STV, namely the assignment of fractional transfer values

to ballots.

4.1 Method

The method hinges on identifying a termination condition local to the rules. This

starts with the observation, gained from working with the proof rules formalisa-

tions of FPTP and Simple STV, that as the count proceeds or the proof sequence

grows, there is always something decreasing. In the case of FPTP, from the initial

judgement onwards, the number of uncounted votes decreases after each rule ap-

plication until it reaches zero and a winner may be declared. For Simple STV it is

more complicated, but there are similar observations - at every rule application,

the number of hopeful candidates, for example, is non-increasing.

Working from this observation, the idea is to make explicit the understanding

that certain judgements are intermediate and certain judgements are final, and

then define a function that assigns to a non-final judgement the value of the data

in the judgement that is always decreasing. We call this function the measure of

a non-final judgement. Intuitively, if the measure decreases at every rule appli-

cation, and there is always a rule that can be applied to a non-final judgement,

then we can prove termination – that a final judgement is always reached.

The property of the measure that allows us to prove termination is that it

takes values in a type with a well-founded order. A well-founded order is defined

classically as follows.
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Definition 4.1. Let X be a set with a strict ordering ≺ and inverse ordering

given by �. Then ≺ is a well-founded order if there is no infinite descending

chain x1 � x2 � · · · � xn � . . ..

An example of a well-founded order is the natural numbers with the ‘less than’

ordering. Since a well-founded order has no infinite descending chains, a de-

creasing measure on the domain of a well-founded order must terminate. In a

constructive setting, this definition is valid but not useful as it is given in terms

of the non-existence of a property. There is a constructive alternative, defined in

terms of the positive property of accessibility.

Definition 4.2. Let A be the accessibility predicate, then accessibility is defined

inductively by the following rule:

∀y ≺ x.A(y)

A(x)

This says that if every y ≺ x is accessible, then x is accessible. From this

definition, a well-founded order is defined constructively as follows.

Definition 4.3. Let X be a set with a strict ordering ≺. Then ≺ is a well-founded

order if and only if every element in its domain is accessible.

The constructive definition implies the classical definition, but not the con-

verse. Since the accessibility relation is defined inductively, there is automatically

an induction principle.

Definition 4.4 (Well-founded induction).

∀x ∈ X.(∀y ≺ x.P (y))⇒ P (x)

∀x ∈ X.P (x)

This says that to show a property holds for an arbitrary element x ∈ X,

assume that it holds for all y such that y ≺ x, then show that it holds for x. It

may then be concluded that it holds for all x ∈ X. The familiar mathematical

induction is just a special case of well-founded induction, where the well-founded

order is the relation < on the natural numbers.

For FPTP, the relation < on the natural numbers is a suitable well-founded

order. Since it is not a single piece of data that is always decreasing in the case

of Simple STV, a more complicated well-founded order is required to compare

tuples.
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Definition 4.5 (Strict lexicographic order). Let A,B and C be three sets with

strict orderings ≺A,≺B and ≺C. The strict lexicographic order ≺ on the cartesian

product A×B × C is defined by

(a, b, c) ≺ (a′, b′, c′)

if and only if

a ≺A a
′ or (a = a′ and b ≺B b′) or (a = a′ and b = b′ and c ≺C c

′).

Theorem 4.6. If ≺A,≺B and ≺C are well-founded, then the lexicographic order

is well-founded.

Suppose we have a list of rules, R, and a well-defined measure. We formalise

two properties which together give a termination condition local to the rules.

Definition 4.7. Let dec be a property of a list of rules R such that dec(R) if

whenever a rule holds true of two judgements, the value of the measure of the

premise is greater than the value of the measure of the conclusion. In other

words, whenever a rule is applied the measure decreases.

Definition 4.8. Let app be a property of a list of rules R such that app(R) if for

every non-final judgement, there is always a rule that may be applied.

The main termination theorem is as follows. For two judgements a and b and

a list of rules R, we say that a proof from a to b via R is a sequence of correct

applications of rules in R, starting with a and ending in b.

Theorem 4.9. For any R such that dec(R) and app(R), for every judgement j

there exists a final judgement and a proof sequence from j to the final judgement

via R.

The proof of this theorem is given in the formalisation in Coq, which we now

develop.

4.1.1 Formalisation in Coq

The formalisation of generic termination is modelled even more closely on a formal

deductive system than the first approach to vote counting as mathematical proof.

We provide the familiar features of judgements, rules and a notion of proof before

formalising the properties and proving the termination theorem.
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The general framework is given as a section in Coq. It is not given as a

separate file; rather, it can be found at the start of each of FPTP_generic.v,

STV_generic.v and Union_generic.v

Implementation 4.10. We begin by defining the type Judgement, intended to

capture a generic notion of a judgement, rather than specifying the forms it may

take. Where before there was an implicit notion of a ‘final’ judgement giving

the outcome of the count, we make this explicit by defining it as a property of a

judgement. We also specify that this property is decidable – for every judgement

there is either a proof that it is final or a proof that it is non-final.

Variable Judgement : Type.

Variable final: Judgement -> Prop.

Hypothesis final_dec: forall j : Judgement, (final j) + (not (final j)).

The keywords Variable and Hypothesis are used so that we may instantiate

these types later on. Similarly, we define a generic relation wfo on a type WFO,

and hypothesise that this relation is well-founded. It uses the well-founded module

in the Coq standard library.

Variable WFO : Type.

Variable wfo: WFO -> WFO -> Prop.

Hypothesis wfo_wf: well_founded wfo.

Next we define the measure function. It maps a non-final judgement to a term

of type WFO, on which the well-founded order exists. To specify that the input

judgement is non-final, the domain of the function type is a dependent type. The

dependent type pairs a judgement with a proof that the judgement is non-final,

and is expressed using familiar set-comprehension notation.

Variable m: { j: Judgement | not (final j) } -> WFO.

To use this function, we define a type that takes a judgement, along with

evidence that it is non-final and packages this into a dependent type. It is called

mk_nfj, read as make non-final judgement.

Definition mk_nfj: forall j: Judgement, forall e: not (final j), { j : Judgement | not (final j) }.

A rule is defined as a relation on two judgements, where the first judgement

is thought of as a premise and the second as a conclusion.

Definition Rule := Judgement -> Judgement -> Prop.



54 CHAPTER 4. GENERIC TERMINATION

Finally we define a type of proofs, this time based on a generic list of rules. As

before, this will allow us to produce an independently verifiable certificate in the

form of a sequence of rule applications. The type of proofs is given as a dependent

inductive type with two constructors, or ways of giving evidence that a judgement

has the property of provability. It is parametrised by an initial judgement and a

list of rules.

Inductive Pf (a : Judgement) (Rules : list Rule) : Judgement -> Type :=

ax : forall j : Judgement, j = a -> Pf a Rules j

| mkp: forall c : Judgement,

forall r : Rule, In r Rules ->

forall b : Judgement, r b c ->

Pf a Rules b ->

Pf a Rules c.

The ax constructor, read axiom, says that every judgement has a proof if it

is equal to the initial judgement. The second constructor mkp, read make proof,

says that if there is a proof from a judgement a to a judgement b, and a rule from

the list holds true of b and a third judgement c, then there is a proof from a to c.

This establishes the elements of the general framework. We now encode two

properties, parametrised by a list of rules, to capture our reasoning from before.

Implementation 4.11. The properties are encoded as parametrised dependent

function types. The first property dec, read decrease, is defined as:

Definition dec (Rules : list Rule) : Type :=

forall r, In r Rules ->

forall p c : Judgement, r p c ->

forall ep : not (final p),

forall ec : not (final c),

wfo (m (mk_nfj c ec )) (m (mk_nfj p ep)).

We read this as saying for a rule in the list and a pair of judgements satisfying

the rule, with evidence that these judgements are non-final, the well-founded order

holds for the measures of the judgements. That is, the measure of the conclusion

is accessible from the measure of the premise.

For the second property app, read application:

Definition app (Rules : list Rule) : Type :=

forall p : Judgement, not (final p) ->

existsT r, existsT c, (In r Rules * r p c).
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This says that for every judgement with evidence of being non-final, there

exists a rule and a judgement such that the rule is contained in the list and the

rule holds of the two judgements.

Note that although we refer to dec and app as properties, the codomain is Type

rather than Prop. This is for the same reason as using the type level existential

quantifier and the type level disjunction - if we defined it as Prop we would lose

the evidence and just have knowledge of truth or falsity.

The main result we want to show is that if these two properties hold for a list of

rules, then we have termination. In the formalisation, termination corresponds to

the existence of a term of the type Pf a Rules c where c is a final judgement.

To this end, we first prove a lemma specifying when a proof sequence may be

extended. Then we prove an auxiliary result of termination before deducing the

desired result as a corollary.

Implementation 4.12. The lemma suppose the list of rules R satisfies the dec

and app properties. It says that if there is a proof from a to a non-final judgement

b via R, there exists a judgement c such that we can extend to a proof from a to c

via R. Furthermore, if c is non-final, then it has measure less than the measure

of b. It is readily encoded using the formalisations from before:

Lemma extend:

forall Rules : list Rule,

dec Rules ->

app Rules ->

forall a b : Judgement, forall eb: not (final b),

Pf a Rules b ->

existsT c : Judgement,

(Pf a Rules c) *

(forall ec: not (final c), wfo (m (mk_nfj c ec)) (m (mk_nfj b eb))).

The proof follows easily from unfolding the definitions of dec and app. In

particular, we instantiate the assumption of app with the non-final judgement

b to say that there exists a rule holding for b and c. This allows us to apply

the mkp constructor to go from a proof of b from a to a proof of c from a. It

remains to show the second conjunct of the conclusion, that if c is non-final then

the measure decreases from judgement b to c. This follows easily by specialising

the assumption of dec to the judgements b and c, as well as the rule that holds

for them.

We now present the theorem from which we can deduce termination. It says

that if a set of rules satisfies the dec and app properties, then for all judgements
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a and b such that b is non-final and there is a proof of b from a, there exists a

judgement c such that c is final and there is a proof of c from a.

Theorem termination_aux : forall Rules : list Rule,

dec Rules ->

app Rules ->

forall n: WFO,

forall a b : Judgement,

forall eb: not (final b),

m (mk_nfj b eb) = n ->

Pf a Rules b ->

(existsT c : Judgement, final c * Pf a Rules c).

To prove this theorem, we perform well-founded induction on the measure of

b. The proof is omitted here but provided in the code.

From this theorem, we define the main result as a corollary. It says that if a

set of rules satisfies the dec and app properties, then for every judgement a there

exists a final judgement c such that there is a proof from a to c. The corollary is

readily encoded:

Corollary termination: forall Rules : list Rule,

dec Rules ->

app Rules ->

forall a : Judgement,

(existsT c : Judgement, final c * Pf a Rules c).

A proof amounts to first supposing a is final and then supposing a is non-

final. If a is final, we apply the constructor ax, and if a is non-final, we apply

the theorem termination_aux. The full proof is included in the code.

This concludes the general proof termination framework. We will now apply

it to three different vote counting protocols. This involves providing a specific

notion of judgement as well as a particular well-founded order and set of rules.

Then after proving dec and app hold, the final corollary can be applied to these

as arguments.

4.2 First past the post

For a first simple instantiation of the vote counting protocol, we consider FPTP as

given in Chapter 1. The original Coq formalisation of FPTP under vote counting

as mathematical proof is given in [15].

The code in FPTP_generic.v has three sections:

1. genericTermination gives the generic framework.
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2. FPTP specialises the framework to FPTP.

3. candidates defines a list of candidates for an example vote count.

In addition, the code ends by instantiating the function to be extracted, using

definitions from the three sections, and with a command for extraction.

Implementation 4.13. The type of judgements is the same as the type Node in

the original FPTP formalisation.

Inductive FPTP_Judgement : Type :=

state : (list cand) * (cand -> nat) -> FPTP_Judgement

| winner : cand -> FPTP_Judgement.

We specify that a final judgement is of the form winner w, and prove decid-

ability for the property of a judgement being final.

Definition FPTP_final (a : FPTP_Judgement) : Prop :=

exists c, a = winner c.

Lemma final_dec: forall j : FPTP_Judgement, (FPTP_final j) + (not (FPTP_final j)).

For the rules, we specialise the definition of a rule to the type of judgement

defined.

Definition FPTP_Rule := FPTP_Judgement -> FPTP_Judgement -> Prop.

We give the rules as separate types, intended to be as easy to read as standard

statements in formal logic.

(* Rule 1: if there is an uncounted vote for c, then increment

c’s tally by one and update the list of uncounted votes*)

Definition count (p: FPTP_Judgement) (c: FPTP_Judgement) : Prop :=

exists u1 t1 u2 t2,

p = state (u1, t1) /\

(exists l1 c l2,

u1 = l1 ++ [c] ++ l2 /\

u2 = l1 ++ l2 /\

inc c t1 t2) /\

c = state (u2, t2).

(* Rule 2: If all votes have been counted and all cands have

fewer votes than c, then c may be declared the winner *)

Definition declare (p: FPTP_Judgement) (c: FPTP_Judgement) : Prop :=

exists u t d,

p = state (u, t) /\

u = [] /\

(forall e : cand, t e <= t d) /\

c = winner d.
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We then define the list of rules.

Definition FPTPR : list FPTP_Rule := [ count; declare ].

We observed that under every rule application, either the number of uncounted

votes decreases or a final judgement is deduced. Therefore, the relevant well-

founded order is the less than relation on the natural numbers. We instantiate

the framework accordingly, defining first the type on which the order exists, the

order and then proving the order is well-founded.

Definition FPTP_WFO : Type := nat.

Definition FPTP_wfo: FPTP_WFO -> FPTP_WFO -> Prop := lt.

Lemma FPTP_wfo_wf: well_founded FPTP_wfo.

Accordingly, we define the measure to map a non-final judgement to the length

of the list of uncounted votes at that state of the count. Rather than defining it

directly, we make an interactive definition by giving the following declaration, and

then stepping through the construction of a term of the desired type.

Definition FPTP_m : { j: FPTP_Judgement | not (FPTP_final j) } -> nat.

With this formalised, it is a matter of proving the two properties.

Implementation 4.14. We provide the arguments for the dec property:

Lemma dec_FPTPR : dec FPTP_Judgement FPTP_final FPTP_WFO FPTP_wfo FPTP_m FPTPR.

The proof proceeds considering each rule in turn and is given in the code. We

provide the arguments for the app property:

Lemma app_FPTPR : app FPTP_Judgement FPTP_final FPTPR.

The proof proceeds by case analysis and is given in the code.

We can now give an example set of candidates and extract a program that

will count votes for them, as we showed before for Simple STV.

Example 4.15. We provide candidates as for our example of Simple STV.

Inductive cand := Alice | Bob | Claire | Darren.

Definition cand_all := [Alice; Bob; Claire; Darren].

and then define the termination function.

Definition FPTP_termination :=

termination (FPTP_Judgement cand) (FPTP_final cand) (final_dec cand)

FPTP_WFO FPTP_wfo FPTP_wfo_wf (FPTP_m cand) (FPTPR cand) (dec_FPTPR cand)

(app_FPTPR cand cand_all cand_finite cand_eq_dec cand_inh).

We can then extract this function to obtain Haskell code, see FPTPCode.hs,

with a wrapper for the sake of visualisation, see FPTPCount.hs.
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4.3 Simple STV

As a second example, Simple STV is implemented in the generic termination

framework. The code has three sections:

1. genericTermination gives the generic framework.

2. STV specialises the framework to Simple STV.

3. candidates defines an example list of

The specialisation of the framework to the protocol is explained below.

Implementation 4.16. The definition of a judgement is the same as the previ-

ous formalisation of Simple STV, except with two adjustments – the types corre-

sponding to the tally and elected candidates are now given as dependent types, to

hard-code a property of each. A tally is a function paired with evidence that the

value of the function is never greater than the quota, and the elected candidates

are a list paired with evidence that the length of the list is never greater than the

number of seats.

Inductive STV_Judgement :=

state: (** intermediate states **)

list ballot (* uncounted votes *)

* (cand -> list ballot (* assignment of counted votes to first pref candidate *)

* { tally : (cand -> nat) | forall c, tally c <= qu } (* tally *)

* (list cand) (* hopeful cands still in the running *)

* { elected: list cand | length elected <= s} (* elected cands no longer in the running *)

-> STV_Judgement

| winners: (** final state **)

list cand -> STV_Judgement. (* election winners *)

In the previous formalisation, these properties where proved as lemmas. Since

we are now working in a generic framework, the instantiation itself need not be

generic.

A final judgement is defined to be a judgement of the second form,

Definition STV_final (a : STV_Judgement) : Prop :=

exists w, a = winners w.

and showing this property is decidable is a routine proof of the following lemma.

Lemma final_dec: forall j : STV_Judgement, (STV_final j) + (not (STV_final j)).

The generic definition of a rule as a property of a pair of judgements is spe-

cialised to Simple STV judgements.
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Definition STV_Rule := STV_Judgement -> STV_Judgement -> Prop.

The rules may then be defined, with an individual type for each rule. They are

expressed differently but correspond to the same rules as before, except for minor

adjustments due to the dependent types in the judgement type. We also dispense

of the rule corresponding to the start of the count, since the type of proofs allows

us to specify a starting state.

Definition tl (p: STV_Judgement) (c: STV_Judgement) : Prop :=

exists u a t h nh e d, (** transfer least **)

p = state ([], a, t, h, e) /\ (* if we have no uncounted votes *)

length (proj1_sig e) + length h > s /\ (* and there are still too many candidates *)

In d h /\ (* and candidate d is still hopeful *)

(forall e, In e h-> (proj1_sig t) d <= (proj1_sig t) e) /\ (* but all others have more votes *)

eqe d nh h /\ (* and d has been removed from the new list of hopefuls *)

u = a(d) /\ (* we transfer d’s votes by marking them as uncounted *)

c = state (u, a, t,nh, e). (* and continue in this new state *)

The remainder of the rules are written in the same form. They are omitted here

but included in the code.

To determine an appropriate well-founded order and measure function, we

analyse the rule applications to identify quantities in the judgement type that

decrease. This is more complicated than for FPTP because although there is

always some quantity in the judgement that decreases, it is not always the same

quantity. For example, under the ‘count one’ rule, the number of uncounted

votes decreases and the number of hopeful candidates remains the same, while

under the ‘transfer least’ rule, the number of hopeful candidates decreases and

the number of uncounted votes increases.

A strict lexicographic order on triples of natural numbers is used as the well-

founded ordering. We define the measure as a function on non-final judgements

to N× N× N by:

state(u, a, t, h, e) 7→
(
|h|, |u|,

∑
v∈u

|v|
)

that is, a triple of the length of the list of hopeful candidates, the length of the list

of uncounted votes and the sum of the lengths of the uncounted votes. In two of

the five rules concerning non-final judgements, the number of hopeful candidates

decreases. Of the remaining rules, the ‘count one’ and ‘empty votes’ rules both

preserve the number of hopeful candidates but decrease the number of uncounted

votes, while the ‘transfer votes’ rule preserves the number of hopeful candidates
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and the number of uncounted votes but decreases the sum of the lengths of the

uncounted votes. Therefore, this satisfies the definition of a lexicographic order.

We now implement these definitions in Coq.

Implementation 4.17. The definition of a lexicographic order on a triple of

natural numbers, as well as a proof of well-foundedness, comes from [4] and we

omit the details here. Using this, we define a product type and lexicographic order

on the product type and prove that it is well-founded.

Definition STV_WFO := nat * (nat * nat).

Definition STV_wfo : STV_WFO -> STV_WFO -> Prop := (fun x y : nat * (nat * nat) =>

lt_npq (mk3 x) (mk3 y)).

Lemma STV_wfo_wf : well_founded STV_wfo.

unfold STV_wfo.

apply wf_inverse_image.

apply wf_lexprod.

Qed.

Since the lexicographic order in [4] is defined for ease of proving well-foundedness

using pre-existing objects from the Coq libraires, rather than in terms of its op-

erational behaviour as defined earlier, we prove the following lemma to show the

two are equivalent.

Lemma wfo_aux: forall a b c a’ b’ c’ : nat,

(lt_npq (mk3 (a, (b, c))) (mk3 (a’, (b’, c’))) <->

(a < a’ \/

(a = a’ /\ b < b’ \/

(a = a’ /\ b = b’ /\ c < c’)))).

Now we may define the measure function as discussed earlier. We must first

define a function that takes a list of lists and returns the sum of the lengths of

all the lists in the list. We also prove some basic properties about this function

for later proofs – namely that it is a homomorphism and that there is an order

relation. We include the definition below and omit the lemmas.

Fixpoint sum_len {A: Type} (l: list (list A)) : nat := match l with

| [] => 0

| x::xs => (length x + sum_len xs)%nat

end.

Then we can provide the measure by constructing a proof term of the following

type.

Definition STV_m: { j: STV_Judgement | not (STV_final j) } -> STV_WFO.
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With the generic framework instantiated, it is now a matter of proving the

dec and app properties hold of the list of Simple STV rules. The formal proofs

may be found in the code; here we provide informal proof sketches.

To show that a rule can always be applied proceeds by case analysis. For an

arbitrary non-final judgement state(u, a, t, h, e), we are required to prove the exis-

tence of a rule and a second judgement such the rule holds true of the judgement

pair. To prove existence, we must exhibit a witness, that is, explicitly provide

a rule and a judgement and then prove that the required properties hold. For

example, u is either the empty list or of the form u #us. We use tactics to break

it into these two cases. Suppose u is the empty list, then we make a new case

distinction – either |e| + |h| ≤ s or |e| + |h| > s. In the first case, we may apply

the ‘hopefuls win’ rule, and we have enough information about the terms u, a, t, h

and e to construct a second judgement so the the rule holds. The case analysis

proceeds.

In showing that the measure always decreases, for the sake of modularity and

readability, we split the dec property up by proving a series of lemmas for each rule

saying that the measure decreases under that rule. This is routine manipulation

of the definitions of the rules so we omit the details.

Having proved these two properties, we may again use the termination result

proved in the generic framework to define a function and extract a vote counting

program producing an outcome and a proof in the form of a proof sequence. The

function is given as follows, using the candidates defined in the candidate section.

Definition STV_termination :=

termination (STV_Judgement cand qu s) (STV_final cand qu s) (final_dec cand qu s) STV_WFO

STV_wfo STV_wfo_wf (STV_m cand qu s) (STV cand qu s) (dec_STV cand qu s)

(app_STV cand cand_eq_dec qu s).

4.4 The ANU Union vote counting protocol

The Australian National University Union Incorporated (the Union) uses a pro-

tocol based on a variant of STV using fractional transfer values. A fractional

transfer value is a rational number less than 1 assigned to a candidate’s surplus

at the stage of transfer. In our version of simple STV, we did not take this into

account. The voting procedure for the Union is included as Appendix A.

With fractional transfer, the tally is the sum of the transfer values on the

ballots. The formalisation draws on the method of manual counting in which

there is a ‘pile’ of ballots corresponding to each candidate. Throughout the
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count, ballots are moved between the piles as candidates are eliminated and their

votes are transferred. This image is used in the formalisation. We also think of

an extra pile corresponding to a backlog of candidates requiring their votes to be

transferred. This accounts for the order of transfer being important - transfers

happen in the order candidates were eliminated.

4.4.1 Mathematical formalisation

Let C be a set of candidates. A single ballot is represented by a pair B = (v, w),

where the ‘vote’ v ∈ List(C) is a permutation of the set of candidates and w ∈ Q
is the ‘weight’ of the ballot, also known as the transfer value.

Definition 4.18. If b ∈ List(B) represents the list of ballots cast and s ∈ N
represents the number of seats available to be filled, then the quota q ∈ Q is given

by the Droop quota, that is

q =
|b|
s+ 1

+ 1

Definition 4.19. If b ∈ List(B) represents the list of ballots cast and s ∈ N
represents the number of seats available to be filled, then a judgement takes one

of two forms:

(b, s) ` state(ba, t, p, bl, e, h)

where ba ∈ List(B) the list of ballots requiring attention; t : C → N a tally

recording the votes for each candidate; p : C → List(B) a ‘pile’ of ballots being

counted towards a particular candidate; bl ∈ List(C) the ‘backlog’ of candidates

whose votes are to be transferred; e ∈ List(C) the elected candidates; and h ∈
List(C) the list of hopeful candidates still in the running; or

(b, s) ` winners(w)

where w ∈ List(C) represents the list of winners of the election.

The first judgement corresponds to an intermediate state of the count, while

the second judgement corresponds to the final state of the count. We explicitly

define the form of a ‘final’ judgement.

Definition 4.20. A judgement is said to be final if it is of the second form,

(b, s) ` winners(w) for some w ∈ List(C).
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We consider the lexicographic order on the set of triples of natural numbers.

We prove this is a well-founded order in Coq.

Definition 4.21. Let the measure be a function which takes a judgement of the

form state(ba, t, p, bl, e, h) and returns (|h|, |bl|, |ba|).

The rules of the deductive system are given in the usual way, in the form of a

premise and a conclusion with side conditions relating the these judgements, and

a label to the right. Bullet indentation corresponds to quantification.

Definition 4.22. There are seven deduction rules.

Count applies when there are ballots requiring attention, for example at the start

of the count or after votes have been transferred. The ballots requiring

attention are distributed amongst the candidates’ piles, according to the first

continuing candidate on the ballot. The candidates’ tallies are updated by

adding together the weights of the ballots in their updated pile. To distribute

the ballots, let fcc be the ‘first continuing candidate’ relation,

fcc(ba, h, c, b) ≡ b ∈ ba ∧ c ∈ h ∧
∃l1, l2.

(
π1(b) = l1 # c # l2 ∧ ∀d.(d ∈ l1⇒ d 6∈ h)

)
holding for a list of ballots requiring attention, a list of hopeful candidates,

a candidate c and a ballot b when b requires attention, and c is the first

hopeful candidate on the ballot. Then define the rule:

state(ba, t, p, bl, e, h)

state(ba′, t′, p′, bl, e, h)
(Count)

• ba 6= ∅, ba′ = ∅.

• ∀c,∃l such that

– p′(c) = p(c) # l

– ∀b, b ∈ l⇔ fcc(ba, h, c, b)

– t′(c) =
∑

b∈p′(c) π2(b)

read as:

“If there are ballots requiring attention, redistribute each bal-

lot from this pile to the pile corresponding to the first continuing

candidate on the ballot. Update the tally for each candidate ac-

cording to the transfer value on the ballot.”



4.4. THE ANU UNION VOTE COUNTING PROTOCOL 65

Transfer applies when there are no ballots requiring attention and no candidates

that may be elected, however there is a backlog of candidates no longer in

the running that need their votes transferred. Define the rule:

state(va, t, p, bl, e, h)

state(va′, t, p′, bl′, e, h)
(Transfer)

• va = ∅
• ∀c, c ∈ h⇒ t(c) < qu

• ∃l, c such that

– bl = c :: l

– va′ = p(c)

– bl′ = l

– p′(c) = ∅
– ∀d.(d 6= c⇒ p′(d) = p(d))

read as:

“If there are no ballots requiring attention, none of the hopeful

candidates have reached the tally and there is a backlog of candi-

dates to have their votes transferred, take the pile of ballots for

the candidate at the front of the backlog and add it to the list of

ballots requiring attention. The backlog is updated by removing

the head, duplication of ballots is prevented by specifying that the

pile of the candidate in question is now empty, and every other

pile remains unchanged.”

Elect applies when there are no candidates requiring attention and there are

hopeful candidates who have reached the quota to be elected. To specify that

the lists of hopeful candidates and elected candidates are updated, let leqe be

the relation

leqe(k, l, l′) ≡ ∀x, x ∈ k ⇒ eqe(x, l, l′)

holding for k, l, l′ ∈ List(X) and x ∈ X when l and l′ are equal except that l′

additionally contains all the elements of the list k, where eqe is as defined

earlier.

Let ordered be a function ordering a list according to according to a rational-

valued function f such that if f(x) ≥ f(y), x is before y in the list. Let map

define a function by λ extraction over something. Then define the rule:
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state(va, t, p, bl, e, h)

state(va, t, p′, bl′, e′, h′)
(Elect)

• va = ∅

• ∃l such that

– l 6= ∅
– |l| ≤ s− |e|
– ∀c.(c ∈ l⇔ (c ∈ h ∧ t(c) ≥ q))

– ordered(t, l)

– leqe(l, h′, h), leqe(l, e, e′)

– ∀c, c ∈ l⇒
p′(c) = map(λ(v, w).

(
v, w ∗

t(c)−q
t(c)

)
, p(c))

– ∀c, c 6∈ l⇒ p′(c) = p(c)

– bl′ = bl :: l

read as:

“If there are no ballots requiring attention, and there are con-

tinuing candidates who have reached the quota (but no more than

the number of available seats), order these candidates by surplus

and declare them elected by moving them from the list of hopefuls

to the list of elected candidates. Update the transfer values in the

piles of the newly elected candidates, while leaving the other piles

unchanged. Add the list of newly elected candidates to the end of

the backlog. ”

Elimination applies when there are no ballots requiring attention, no transfer

backlog and too many candidates still in the running. Define the rule:
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state(va, t, p, bl, e, h)

state(va′, t, p′, bl, e, h′)
(Elim)

• va = ∅, bl = ∅

• length h+ length e > s

• ∀c ∈ h, t(c) < q

• ∃c such that

– ∀d ∈ h, t(c) ≤ t(d)

– h′ = h \ [c]

– va′ = p(c)

– ∀d, d 6= c⇒ p′(d) = p(d)

– p′(c) = ∅
read as:

“If there are no ballots requiring attention, there is no backlog

of candidates to have their votes transferred and the sum of hope-

ful and elected candidates exceeds the number of available seats,

then take the candidate with the minimum number of votes and

remove them from the hopefuls. Move their pile of ballots to the

pile requiring attention, while leaving all of the other piles un-

changed.”

Hopeful win declares the winners of the election in the case where the number

of elected plus hopeful candidates is no greater than the number of seats.

Define the rule:

(b, s) ` state(ba, t, p, bl, e, h)

(b, s) ` winners(w)
(Hwin)

• |e|+ |h| ≤ s

• w = e #h

read as:

“If the number of candidates that are either hopeful or elected

is less than or equal to the number of seats available, then scrutiny

ceases and all candidates that are either elected or hopeful are

declared winners of the election”.

Elected win declares the winners of the election in the case where the number

of seats is the same as the number of candidates marked as elected. Define

the rule:
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(b, s) ` state(ba, t, p, bl, e, h)

(b, s) ` winners(w)
(Ewin)

• |e| = s

• w = e

read as:

“If the number of elected candidates equals the number of seats

available, scrutiny ceases and the elected candidates are declared

the winners of the election”.

4.4.2 Formalisation in Coq

As a third demonstration of how the generic framework may be readily applied

to different vote counting protocols, the mathematical formalisation of the Union

protocol is implemented. The implementation of a protocol in the generic ter-

mination framework should now seem routine. The code Union_generic.vs has

two sections:

1. genericTermination gives the generic framework.

2. unionCount specialises the framework to the Union protocol.

To determine the measure, again there is not a single quantity in a non-final

judgement that decreases on every rule application. However, there is always a

quantity that decrease, and the well-founded order is again a strict lexicographic

order on a triple of natural numbers. We define the measure as a function on

non-final judgements to N× N× N by:

state(ba, t, p, bl, e, h) 7→
(
|h|, |bl|, |ba|)

that is, a triple of the length of the list of hopeful candidates, the length of the list

of candidates whose votes are to be transferred and the length of the list of ballots

requiring attention. In two of the four rules concerning non-final judgements, the

number of hopeful candidates decreases. Of the remaining rules, the ‘count one’

rule preserves the number of hopeful candidates and preserves the length of the

backlog but decreases the number of votes requiring attention, while the ‘transfer

votes’ rule preserves the number of hopeful candidates but decreases the length

of the backlog. Therefore it satisfies the definition of a lexicographic order.

We now implement these definitions in Coq.
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Implementation 4.23. This time, we specify that a ballot is a permutation of

the candidates, along with a transfer value, given as a pair type where the first

component is a dependent type:

Definition ballot := ({v : list cand | Permutation cand_all v} * Q).

A judgement is encoded as follows. We use the prefix ‘FT’, read as ‘fractional

transfer’, throughout.

Inductive FT_Judgement :=

state: (** intermediate states **)

list ballot (* uncounted votes *)

* (cand -> Q) (* tally *)

* (cand -> list ballot) (* pile of ballots for each candidate*)

* list cand (* backlog of candidates requiring transfer *)

* {elected: list cand | length elected <= st} (* elected cands no longer in the running *)

* list cand (* hopeful candidates still in the running *)

-> FT_Judgement

| winners: (** final state **)

list cand -> FT_Judgement. (* election winners *)

We define the property of being a final judgement as taking a particular form,

and prove that the property is decidable.

Definition FT_final (a : FT_Judgement) : Prop :=

exists w, a = winners w.

Lemma final_dec: forall j : FT_Judgement, (FT_final j) + (not (FT_final j)).

We specialise the definition of a rule to the particular type in question.

Definition FT_Rule := FT_Judgement -> FT_Judgement -> Prop.

The rules are encoded as individual types. We have to define several functions

to formalise the rules, which we omit. An example is the ‘count’ rule

Definition count (prem: FT_Judgement) (conc: FT_Judgement) : Prop :=

exists ba t nt p np bl h e, (** count the ballots requiring attention **)

prem = state (ba, t, p, bl, e, h) /\ (* if we are in an intermediate state of the count *)

[] <> ba /\ (* and there are ballots requiring attention *)

(forall c, exists l, (* and for each candidate c there is a list of ballots *)

np(c) = p(c) ++ l /\ (* such that the pile for c is updated by adding l to the top *)

(forall b, In b l <-> fcc ba h c b) /\ (* and a ballot is added to c’s pile iff c is fcc *)

nt(c) = sum (np(c))) /\ (* and the new tally for c updated *)

conc = state ([], nt, np, bl, e, h). (* then we proceed with the updates *)

The remainder of the rules are written in the same form and included in the

code. The list of all rules is defined.

Definition FTR : list FT_Rule := [count; transfer; elect; elim; hwin; ewin].
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The well-founded order is again a strict lexicographic order on a triple of

natural numbers. The implementation is the same as before, and the same lemma

of well-founded order operational behaviour is proved.

Definition FT_WFO := nat * (nat * nat).

Definition FT_wfo : FT_WFO -> FT_WFO -> Prop := (fun x y : nat * (nat * nat) =>

lt_npq (mk3 x) (mk3 y)).

Lemma FT_wfo_wf : well_founded FT_wfo.

We implement the definition of the measure by providing the term, as discussed

before, of the following type.

Definition FT_m: { j: FT_Judgement | not (FT_final j) } -> FT_WFO.

Having specialised the framework, it remains to prove the two properties dec

and app hold. The dec property has been proved using the same approach as for

Simple STV. This is included in the code, but is routine and not elaborated on

here.

The app property is again proved by case analysis. The proof is still in de-

velopment, due to the time restraints on the project, however there is confidence

that it can be completed with more time.



Concluding remarks

The electronic vote counting as mathematical proof approach is a fruitful appli-

cation of elegant ideas in structural proof theory and type theory. By proving the

majority criterion holds for the implementation of STV, we have demonstrated

that the method readily accommodates comparison of voting system criteria. By

constructing a generic framework, we have made the application of the approach

to different vote counting protocols easier.

Further work begins with finishing the final proof in the generic termination

implementation of the Union protocol, which is anticipated to be a straightfor-

ward task. It would also be interesting to explore other benefits of the modularity

of the generic termination framework, for example, by trying to determine con-

ditions local to the rules that ensure certain voting system criteria are satisfied.
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Appendix A

The Union constitution, sections

22-23

We include the relevant sections of the constitution on which the protocol in

Chapter 4 is based, so that the reader may verify that the protocol formalised is

the same as the protocol specified in the legal document. The complete constitu-

tion may be found here [17].

22. Counting of Votes

(1) Provided that the Returning Officer is satisfied there has been no ir-

regularity in the course and conduct of the election, then, immediately

after the close of the poll, the Returning Officer or her/his deputy shall

open the ballot box containing the voting papers and count the first

preference votes.

(2) Following the count of first preference votes, the Returning Officer may

adjourn the count of votes to such time and place as the Returning

Officer thinks fit, and may make such further adjournments as she/he

feels necessary.

(3) No member of the Union or employees of the Union shall be engaged

in the counting of votes at an election.

(4) Each candidate shall be entitled to nominate a scrutineer to represent

her/him at the counting of votes. Such nominations must be in writing

and signed by the candidate.

23. Determination of Election
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(1) After the recording to first choices towards candidates and rejection of

all informal voting papers, the aggregate number of first choices shall

be divided by one more than the number of candidates required to be

elected, and the quotient increased by one, disregarding any remainder.

This shall be the quota required for election.

(2) Any candidate who has, upon the first choices being counted, a number

of such votes equal to or greater than the quota shall be declared

elected. Where the number of such votes for a successful candidate

does not exceed the quota, the voting papers shall be set aside as

being finally dealt with.

(3) Where the number of votes (including transferred votes), obtained by

any candidate exceeds the quota, the proportion of votes in excess of

the quota shall be transferred to the other candidates not yet declared

elected, next in the order of the voters’ respective preferences as follows:

(a) the surplus of the elected candidate shall be divided by the total

number of votes obtained (including transferred votes) and the

resulting fraction shall be the transfer value;

(b) the ballot papers shall be marked with the transfer value, and

in subsequent transfers shall be marked with the product of the

current transfer value with previous transfer values;

(c) the votes of the elected candidates shall be distributed according

to the next preferences on the ballot papers weighted in accordance

with the transfer value or product, and shall be added to the votes

of the not yet elected candidates.

(4) Where, on the counting of first choices or on any transfer, more than

one candidate has a surplus, the largest surplus shall be first dealt with.

Where a surplus arises only after a transfer of votes, any surpluses

which arose before such transfer shall be first dealt with. Where two

or more surpluses are equal, the surplus of the candidate highest on the

poll at the last count or transfer shall be first dealt with. If otherwise

equal, the Returning Officer shall decide by lot which surplus shall be

first dealt with.

(5) Where the number of votes obtained by a candidate is raised up to

above the quota by a transfer of votes, such candidate shall be declared

elected, and the transfer completed. No vote of any other candidate
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shall be transferred to the elected candidate. Where the number of

such votes for a successful candidate does not exceed the quota, the

voting papers shall be set aside as being finally dealt with.

(6) Where, after first choices have been counted and all surpluses have been

transferred, fewer candidates than the number of candidates required

to be elected, have obtained a quota, the candidate with the fewest

votes (including transfers) shall be excluded, and the votes transferred

to other candidates not yet elected, according to the next preferences

indicated on the ballot papers. The votes transferred from excluded

candidates shall not be further discounted.

(7) Where any surplus arises it shall be dealt with before any other candi-

date is excluded.

(8) The same process of excluding the candidate with the fewest votes

and transferring them to other candidates shall be repeated until all

the candidates except the number remaining to be elected, have been

excluded. All unexcluded candidates shall then be declared elected.

(9) Where at any time it becomes necessary to exclude a candidate, and

two or more candidates have the same number of votes (including trans-

fers), then the Returning Officer shall determine by lot the candidate

to be excluded.

(10) (In determining which candidate is next in the order of the voter’s

preference, any candidates who have been declared elected or have

been excluded shall not be considered, and the order of the voter’s

preference shall be determined as if the names of such candidates had

not been on the ballot paper. Where the ballot paper fails to indicate

sufficient preferences so as to transfer the vote, it shall be set aside as

exhausted.

(11) The Returning Officer may, of her/his own motion, or on the request

of any candidate setting out the reasons for the request, recount the

voting papers received in connection with any election.

(12) When the Returning Officer has ascertained the result of the election,

and after any necessary recount has been completed, the Returning

Officer shall declare the poll for the election by announcing, in order

of their election, the names of the successful candidates.
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Figure A.1: Sections 22 and 23 of the ANU Union Constitution.
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